772 research outputs found

    Molecular Dynamics Study of Rotating Nanodroplets: Finite-size Effects and Nonequilibrium Deformation

    Full text link
    Noneqiuilibrium dynamics of rotating droplets are studied by molecular dynamics simulations. Small deviations from the theoretical prediction are observed when the size of a droplet is small, and the deviations become smaller as the size of the droplet increases. The characteristic timescale of the deformation is observed, and we find (i) the deformation timescale is almost independent of the rotating velocity with for small frequency and (ii) the deformation timescale becomes shorter as temperature increases. A simple model is proposed to explain the deformation dynamics of droplets.Comment: 14 pages, 8 figure, added references, changed titl

    Distance-Dependent Homeostatic Synaptic Scaling Mediated by A-Type Potassium Channels

    Get PDF
    Many lines of evidence suggest that the efficacy of synapses on CA1 pyramidal neuron dendrites increases as a function of distance from the cell body. The strength of an individual synapse is also dynamically modulated by activity-dependent synaptic plasticity, which raises the question as to how a neuron can reconcile individual synaptic changes with the maintenance of the proximal-to-distal gradient of synaptic strength along the dendrites. As the density of A-type potassium channels exhibits a similar gradient from proximal (low)-to-distal (high) dendrites, the A-current may play a role in coordinating local synaptic changes with the global synaptic strength gradient. Here we describe a form of homeostatic plasticity elicited by conventional activity blockade (with tetrodotoxin) coupled with a block of the A-type potassium channel. Following A-type potassium channel inhibition for 12 h, recordings from CA1 somata revealed a significantly higher miniature excitatory postsynaptic current (mEPSC) frequency, whereas in dendritic recordings, there was no change in mEPSC frequency. Consistent with mEPSC recordings, we observed a significant increase in AMPA receptor density in stratum pyramidale but not stratum radiatum. Based on these data, we propose that the differential distribution of A-type potassium channels along the apical dendrites may create a proximal-to-distal membrane potential gradient. This gradient may regulate AMPA receptor distribution along the same axis. Taken together, our results indicate that A-type potassium channels play an important role in controlling synaptic strength along the dendrites, which may help to maintain the computational capacity of the neuron

    Frequency-Dependent Signal Transmission and Modulation by Neuromodulators

    Get PDF
    The brain uses a strategy of labor division, which may allow it to accomplish more elaborate and complicated tasks, but in turn, imposes a requirement for central control to integrate information among different brain areas. Anatomically, the divergence of long-range neuromodulator projections appears well-suited to coordinate communication between brain areas. Oscillatory brain activity is a prominent feature of neural transmission. Thus, the ability of neuromodulators to modulate signal transmission in a frequency-dependent manner adds an additional level of regulation. Here, we review the significance of frequency-dependent signal modulation in brain function and how a neuronal network can possess such properties. We also describe how a neuromodulator, dopamine, changes frequency-dependent signal transmission, controlling information flow from the entorhinal cortex to the hippocampus

    Frequency-Dependent Gating of Synaptic Transmission and Plasticity by Dopamine

    Get PDF
    The neurotransmitter dopamine (DA) plays an important role in learning by enhancing the saliency of behaviorally relevant stimuli. How this stimulus selection is achieved on the cellular level, however, is not known. Here, in recordings from hippocampal slices, we show that DA acts specifically at the direct cortical input to hippocampal area CA1 (the temporoammonic (TA) pathway) to filter the excitatory drive onto pyramidal neurons based on the input frequency. During low-frequency patterns of stimulation, DA depressed excitatory TA inputs to both CA1 pyramidal neurons and local inhibitory GABAergic interneurons via presynaptic inhibition. In contrast, during high-frequency patterns of stimulation, DA potently facilitated the TA excitatory drive onto CA1 pyramidal neurons, owing to diminished feedforward inhibition. Analysis of DA's effects over a broad range of stimulus frequencies indicates that it acts as a high-pass filter, augmenting the response to high-frequency inputs while diminishing the impact of low-frequency inputs. These modulatory effects of DA exert a profound influence on activity-dependent forms of synaptic plasticity at both TA-CA1 and Schaffer-collateral (SC)-CA1 synapses. Taken together, our data demonstrate that DA acts as a gate on the direct cortical input to the hippocampus, modulating information flow and synaptic plasticity in a frequency-dependent manner

    Maternal immune activation alters nonspatial information processing in the hippocampus of the adult offspring

    Get PDF
    The observation that maternal infection increases the risk for schizophrenia in the offspring suggests that the maternal immune system plays a key role in the etiology of schizophrenia. In a mouse model, maternal immune activation (MIA) by injection of poly(I:C) yields adult offspring that display abnormalities in a variety of behaviors relevant to schizophrenia. As abnormalities in the hippocampus are a consistent observation in schizophrenia patients, we examined synaptic properties in hippocampal slices prepared from the offspring of poly(I:C)- and saline-treated mothers. Compared to controls, CA1 pyramidal neurons from adult offspring of MIA mothers display reduced frequency and increased amplitude of miniature excitatory postsynaptic currents. In addition, the specific component of the temporoammonic pathway that mediates object-related information displays increased sensitivity to dopamine. To assess hippocampal network function in vivo, we used expression of the immediate-early gene, c-Fos, as a surrogate measure of neuronal activity. Compared to controls, the offspring of poly(I:C)-treated mothers display a distinct c-Fos expression pattern in area CA1 following novel object, but not novel location, exposure. Thus, the offspring of MIA mothers may have an abnormality in modality-specific information processing. Indeed, the MIA offspring display enhanced discrimination in a novel object recognition, but not in an object location, task. Thus, analysis of object and spatial information processing at both synaptic and behavioral levels reveals a largely selective abnormality in object information processing in this mouse model. Our results suggest that altered processing of object-related information may be part of the pathogenesis of schizophrenia-like cognitive behaviors

    HIV prevalence and factors associated with HIV infection among male injection drug users under 30: a cross-sectional study in Long An, Vietnam

    Get PDF
    BACKGROUND: Sufficient targeted HIV prevention activities aiming at reducing HIV transmission within and from an extremely marginalized population of injection drug users (IDUs) must urgently and efficiently be implemented in Vietnam. This study was conducted to facilitate the development of such activities by describing transmission risks of young IDUs and evaluating factors in association with HIV infection. METHODS: Thirty clusters were selected from 29 hotspot communes in Long An province by probability proportional to size (PPS) sampling method. The snowball technique was used for enrolling participants in each cluster. The cross-sectional association of factors obtained during direct structured interviews to 248 male IDUs aged 14 to 29 years old and with their HIV test results were examined. RESULTS: The HIV prevalence among the studied IDUs was 32%. Age range of 18–20 years old, low educational level, sharing injection equipment or injection drug use in the other cities were independently associated with HIV serostatus in the multivariate analysis. Sexual behaviors did not differ between HIV-positive and -negative IDUs. Among HIV seropositive IDUs who had sexual contact with primary (n = 37), casual (n = 6), and commercial (n = 15) partners, only 5.4% (n = 2), 33.3% (n = 2), and 46.7% (n = 7), respectively, responded that they had used condoms every time. CONCLUSION: About one-third of young IDUs aged less than 30 identified in the hotspot communes in Long An, Vietnam was found to be infected with HIV, and socio-demographic and injection-related factors might account for the infection risk. Prevailing risky sexual behavior of this extremely marginalized population highlights the need to reduce their high transmission risks as a public health priority

    Representations of O(N) spin models by self-avoiding random walks

    Get PDF
    We establish that correlation functions of classical lattice spin models can be represented by series expansions in terms of self-avoiding random walks. Using this, we get new upper bounds of critical temperatures of the O(.V) symmetric classical Heisenberg models

    Significance of Exercise-Related Ventricular Arrhythmias in Patients With Brugada Syndrome

    Get PDF
    Background Sinus tachycardia during exercise attenuates ST‐segment elevation in patients with Brugada syndrome, whereas ST‐segment augmentation after an exercise test is a high‐risk sign. Some patients have premature ventricular contractions (PVCs) related to exercise, but the significance of exercise‐related PVCs in patients with Brugada syndrome is still unknown. The objective of this study was to determine the significance of exercise‐related PVCs for predicting occurrence of ventricular fibrillation (VF) in patients with Brugada syndrome. Methods and Results The subjects were 307 patients with Brugada syndrome who performed a treadmill exercise test. We evaluated the occurrence of PVCs at rest, during exercise and at the peak of exercise, and during recovery after exercise (0–5 minutes). We followed the patients for 92±68 months and evaluated the occurrence of VF. PVCs occurred in 82 patients (27%) at the time of treadmill exercise test: PVCs appeared at rest in 14 patients (4%), during exercise in 60 patients (20%), immediately after exercise (0–1.5 minutes) in 28 patients (9%), early after exercise (1.5–3 minutes) in 18 patients (6%), and late after exercise (3–5 minutes) in 12 patients (4%). Thirty patients experienced VF during follow‐up. Multivariable analysis including symptoms, spontaneous type 1 ECG, and PVCs in the early recovery phase showed that these factors were independently associated with VF events during follow‐up. Conclusions PVCs early after an exercise test are associated with future occurrence of VF events. Rebound of vagal nerve activity at the early recovery phase would promote ST‐segment augmentation and PVCs in high‐risk patients with Brugada syndrome

    High-Velocity Estimates and Inverse Scattering for Quantum N-Body Systems with Stark Effect

    Full text link
    In an N-body quantum system with a constant electric field, by inverse scattering, we uniquely reconstruct pair potentials, belonging to the optimal class of short-range potentials and long-range potentials, from the high-velocity limit of the Dollard scattering operator. We give a reconstruction formula with an error term.Comment: In this published version we have added remarks and we have edited the pape
    corecore