694 research outputs found

    'Puma' Grapefruit

    Get PDF
    'Puma' is a high quality, productive citrus hybrid resulting from a cross between pummelo and grapefuit (C. grandis x C. paradisi L.). The cross was made and resulting hybrid seedlings grown by the Department of Horticulture, University of Hawaii

    Macadamia Nut Cultivars Recommended for Hawaii

    Get PDF

    Reconfiguration on sparse graphs

    Full text link
    A vertex-subset graph problem Q defines which subsets of the vertices of an input graph are feasible solutions. A reconfiguration variant of a vertex-subset problem asks, given two feasible solutions S and T of size k, whether it is possible to transform S into T by a sequence of vertex additions and deletions such that each intermediate set is also a feasible solution of size bounded by k. We study reconfiguration variants of two classical vertex-subset problems, namely Independent Set and Dominating Set. We denote the former by ISR and the latter by DSR. Both ISR and DSR are PSPACE-complete on graphs of bounded bandwidth and W[1]-hard parameterized by k on general graphs. We show that ISR is fixed-parameter tractable parameterized by k when the input graph is of bounded degeneracy or nowhere-dense. As a corollary, we answer positively an open question concerning the parameterized complexity of the problem on graphs of bounded treewidth. Moreover, our techniques generalize recent results showing that ISR is fixed-parameter tractable on planar graphs and graphs of bounded degree. For DSR, we show the problem fixed-parameter tractable parameterized by k when the input graph does not contain large bicliques, a class of graphs which includes graphs of bounded degeneracy and nowhere-dense graphs

    'Kaimana', an improved new lychee cultivar for Hawaii

    Get PDF
    Lychee (Litchi chinensis L.) 'Kaimana' was named in 1982 to commemorate the 75th ("diamond") anniversary of the establishment of the Hawaii Agricultural Experiment Station. 'Kaimana' means "diamond" in the Hawaiian language. The original seedling tree of 'Kaimana' grown at the Poamoho experimental farm on Oahu first produced fruit in 1965 at 10 years of age. This is truly a jewel of a lychee, producing excellent quality fruit. In addition, it has a more consistent bearing habit than any of the 14 Chinese lychee cultivars imported and tested in Hawaii during the past 110 years

    Macadamia: Hawaii's Dessert Nut

    Get PDF
    This publication on macadamia nuts in Hawaii covers botany, cultivars, orchard establishment, fertilization, diseases and pests, and harvesting and processing

    Macadamia : Hawaii's dessert nut

    Get PDF

    Macadamia : Hawaii's dessert nut

    Get PDF

    Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Full text link
    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the darkest regions of the beam thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically-oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When MOT is positioned further away, coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl

    Predictions for the correlation between giant and terrestrial extrasolar planets in dynamically evolved systems

    Full text link
    The large eccentricities of many giant extrasolar planets may represent the endpoint of gravitational scattering in initially more crowded systems. If so, the early evolution of the giant planets is likely to be more restrictive of terrestrial planet formation than would be inferred from the current, dynamically quiescent, configurations. Here, we study statistically the extent of the anti-correlation between giant planets and terrestrial planets expected in a scattering model. We use marginally stable systems of three giant planets, with a realistic range of planetary masses, as a simple model for the initial conditions prior to scattering, and show that after scattering the surviving planets reproduce well the known extrasolar planet eccentricities beyond a > 0.5 AU. By tracking the minimum periastron values of all planets during the evolution, we derive the distribution of orbital radii across which strong perturbations (from crossing orbits) are likely to affect low mass planet formation. We find that scattering affects inner planet formation at orbital separations less than 50% of the final periastron distance of the innermost massive planet in approximately 30% of the realizations, and can occasionally influence planet formation at orbital separations less than 20% of the final periastron distance of the innermost massive planet. The domain of influence of the scattering massive planets increases as the mass differential between the massive planets decreases. Observational study of the correlation between massive and terrestrial extrasolar planets in the same system has the potential to constrain the origin of planetary eccentricity.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Ap
    corecore