23 research outputs found

    Genetic and Epigenetic Regulation of Vernalization in Brassicaceae

    Get PDF
    A wide variation of morphological traits exists in Brassica rapa L. and Brassica oleracea L., and cultivated vegetable varieties of these species are consumed worldwide. Flowering time is an important agronomic trait in these species and varies among varieties or cultivars. Especially, leafy vegetable species need a high bolting resistance. Isolation of FLOWERING LOCUS C (FLC), one of the key genes involved in vernalization, has now provided an insight into the molecular mechanism involved in the regulation of flowering time, including the role of histone modification. In the model plant Arabidopsis thaliana, FLC plays an important role in modulating flowering time. The response to vernalization causes an increase in histone H3 lysine 27 tri-methylation (H3K27me3) that leads to reduced expression of the FLC gene. B. rapa and B. oleracea both contain several paralogs of FLC at syntenic regions identified as major flowering time and vernalization response quantitative trait loci (QTL). We introduce the recent research, not only in A. thaliana, but also in the genus Brassica from a genetic and epigenetic view point

    Identification of DNA methylated regions by using methylated DNA immunoprecipitation sequencing in Brassica rapa

    Get PDF
    DNA methylation is an epigenetic gene regulatory mechanism that plays an essential role in gene expression, transposon silencing, genome imprinting and plant development. We investigated the influence of DNA methylation on gene expression in Brassica rapa L., to understand whether epigenetic differences exist between inbred lines. Genome-wide DNA methylation was analysed by methylated DNA immunoprecipitation sequencing (MeDIP-seq) of 14-day-old first and second leaves from two inbred lines of Chinese cabbage, one susceptible and one resistant to fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans. MACS (model-based analysis for ChIP-seq) identified DNA methylation peaks in genic regions including 2 kb upstream, exon, intron and 2 kb downstream. More than 65% of genes showed similar patterns of DNA methylation in the genic regions in the two inbred lines. DNA methylation states of the two inbred lines were compared with their transcriptome. Genes having DNA methylation in the intron and in the 200 bp upstream and downstream regions were associated with a lower expression level in both lines. A small number of genes showed a negative correlation between differences in DNA methylation levels and differences in transcriptional levels in the two inbred lines, suggesting that DNA methylation in these genes results in transcriptional suppression

    Long noncoding RNAs in Brassica rapa L. following vernalization

    Get PDF
    © 2019, The Author(s). Brassica rapa L. is an important agricultural crop that requires a period of prolonged cold for flowering. This process is known as vernalization. Studies have shown that long noncoding RNAs (lncRNAs) play important roles in abiotic stress responses and several cold-responsive noncoding RNAs have been suggested to be involved in vernalization. We examined the transcriptome of the Chinese cabbage inbred line (B. rapa L. var. pekinensis) RJKB-T24, and identified 1,444 long intergenic noncoding RNAs (lincRNAs), 551 natural antisense transcripts (NATs), and 93 intronic noncoding RNAs (incRNAs); 549 of the 2,088 lncRNAs significantly altered their expression in response to four weeks of cold treatment. Most differentially expressed lncRNAs did not lead to a change of expression levels in mRNAs covering or near lncRNAs, suggesting that the transcriptional responses to four weeks of cold treatment in lncRNA and mRNA are independent. However, some differentially expressed mRNAs had NATs with expression altered in the same direction. These genes were categorized as having an abiotic stress response, suggesting that the paired-expression may play a role in the transcriptional response to vernalization or cold treatment. We also identified short-term cold treatment induced NATs in BrFLC and BrMAF genes, which are involved in vernalization. The lncRNAs we identified differed from those reported in Arabidopsis thaliana, suggesting the role of lncRNAs in vernalization differ between these two species

    The histone modification H3 lysine 27 tri-methylation has conserved gene regulatory roles in the triplicated genome of Brassica rapa L

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. Brassica rapa L. is an important vegetable and oilseed crop. We investigated the distribution of the histone mark tri-methylation of H3K27 (H3K27me3) in B. rapa and its role in the control of gene expression at two stages of development (2-day cotyledons and 14-day leaves) and among paralogs in the triplicated genome. H3K27me3 has a similar distribution in two inbred lines, while there was variation of H3K27me3 sites between tissues. Sites that are specific to 2-day cotyledons have increased transcriptional activity, and low levels of H3K27me3 in the gene body region. In 14-day leaves, levels of H3K27me3 were associated with decreased gene expression. In the triplicated genome, H3K27me3 is associated with paralogs that have tissue-specific expression. Even though B. rapa and Arabidopsis thaliana are not closely related within the Brassicaceae, there is conservation of H3K27me3-marked sites in the two species. Both B. rapa and A. thaliana require vernalization for floral initiation with FLC being the major controlling locus. In all four BrFLC paralogs, low-temperature treatment increases H3K27me3 at the proximal nucleation site reducing BrFLC expression. Following return to normal temperature growth conditions, H3K27me3 spreads along all four BrFLC paralogs providing stable repression of the gene

    The role of FRIGIDA and FLOWERING LOCUS C genes in flowering time of Brassica rapa leafy vegetables

    Get PDF
    © 2019, The Author(s). There is a wide variation of flowering time among lines of Brassica rapa L. Most B. rapa leafy (Chinese cabbage etc.) or root (turnip) vegetables require prolonged cold exposure for flowering, known as vernalization. Premature bolting caused by low temperature leads to a reduction in the yield/quality of these B. rapa vegetables. Therefore, high bolting resistance is an important breeding trait, and understanding the molecular mechanism of vernalization is necessary to achieve this goal. In this study, we demonstrated that BrFRIb functions as an activator of BrFLC in B. rapa. We showed a positive correlation between the steady state expression levels of the sum of the BrFLC paralogs and the days to flowering after four weeks of cold treatment, suggesting that this is an indicator of the vernalization requirement. We indicate that BrFLCs are repressed by the accumulation of H3K27me3 and that the spreading of H3K27me3 promotes stable FLC repression. However, there was no clear relationship between the level of H3K27me3 in the BrFLC and the vernalization requirement. We also showed that if there was a high vernalization requirement, the rate of repression of BrFLC1 expression following prolonged cold treatments was lower
    corecore