27 research outputs found

    Cognitive "Omics": Pattern-based Validation of Potential Drug Targets

    Get PDF
    Despite the abundance of cognitive enhancer mechanisms identified in basic research,drugs approved for cognitive disorders are scarce and of limited efficacy. Although the so called „gold standard" animal assays are well suited to study fundamental learning processes they fail to predict clinical efficacy against complex and robust cognitive defects. Preclinical validation of potential drug targets requires new approaches with higher translational value. In a rodent cognitive test system proposed in this article several learning paradigms are used, each modelling a certain human cognitive domain. Cognitive deficits are brought about by several impairing methods and a particular mechanism of action is tested on each defective cognitive function. The outcome is a cognitive efficacy pattern which should then be matched to the cognitive deficit patterns of the clinical disorders. The best fit will highlight the clinical indication with the greatest chance for success

    The Effects of Cariprazine and Aripiprazole on PCP-Induced Deficits on Attention Assessed in the 5-Choice Serial Reaction Time Task

    Get PDF
    Attentional processing deficits are a core feature of schizophrenia, likely contributing to the persistent functional and occupational disability observed in patients with schizophrenia. The pathophysiology of schizophrenia is hypothesized to involve dysregulation of NMDA receptor-mediated glutamate transmission, contributing to disruptions in normal dopamine transmission. Preclinical investigations often use NMDA receptor antagonists, such as phencyclidine (PCP), to induce cognitive disruptions relevant to schizophrenia. We sought to test the ability of partial dopamine D-2/D-3 agonists, cariprazine and aripiprazole, to attenuate PCP-induced deficits in attentional performance. The objective of this study is to determine whether systemic administration of cariprazine or aripiprazole attenuated 5-choice serial reaction time task (5-CSRTT) deficits induced by repeated exposure to PCP. We utilized a repeated PCP-treatment regimen (2 mg/kg, subcutaneous [s.c.], once daily for 5 days) in rats to induce deficits in the 5-CSRTT. Rats were pre-treated with cariprazine (0.03, 0.1, or 0.3 mg/kg, oral [p.o.]) or aripiprazole (1, 3, or 10 mg/kg, p.o.) to determine whether they prevented PCP-induced deficits in the 5-CSRTT performance. PCP treatment increased inappropriate responding in the 5-CSRTT, elevating incorrect, premature, and timeout responses. Cariprazine treatment reduced PCP-induced increases in inappropriate responding. However, at higher doses, cariprazine produced non-specific response suppression, confounding interpretation of the attenuated PCP-induced deficits. Aripiprazole treatment also attenuated PCP-induced deficits; however, unlike cariprazine treatment, aripiprazole reduced correct responding and increased omissions. Cariprazine and aripiprazole both demonstrated potential in attenuating PCP-induced deficits in the 5-CSRTT performance. While both compounds produced non-specific response suppression, these effects were absent when 0.03 mg/kg cariprazine was administered

    Following of aging process in a new motor skill learning model, "pot jumping" in rats

    Get PDF
    Impairment of procedural memory is a frequent and severe symptom in many neurological and psychiatric diseases as well as during aging. Our aim was to establish an assay in rats in which procedural learning and changes in performance can be studied on the long term. The work was done in the frame of a larger project aiming to establish a complex cognitive animal test battery of high translational value. The equipment was a 190-cm-diameter circular water tank where 12 flower pots were placed upside down in a circle with increasing distances (18-46 cm) between the adjacent ones. Male Lister Hooded and Long-Evans rats were allowed to move on the pots for 3 min. The arena was filled with shallow water to make the rats stay on the pots. Animals were obviously motivated to move around on the pots; however, the distance which required jumping (> 26 cm) meant a barrier for some of them. Development of motor skill was measured by the longest distance successfully spanned. A relatively flat bell-shaped age dependence was observed, with a peak at 13 months of age. A gradual decline in performance could be observed after the age of 20 months which preceded the appearance of overt physical weakness. Long-Evans rats showed more homogeneous performance and higher individual stability than Lister Hooded rats. The method is appropriate to study the development of motor learning and to follow its age-dependent changes. It may also serve as an assay for testing potential drugs for improving motor skills and/or procedural memory

    Effects of cariprazine on extracellular levels of glutamate, GABA, dopamine, noradrenaline and serotonin in the medial prefrontal cortex in the rat phencyclidine model of schizophrenia studied by microdialysis and simultaneous recordings of locomotor activity

    Get PDF
    Aberrant glutamatergic, dopaminergic, and GABAergic neurotransmission has been implicated in schizophrenia. Cariprazine reverses the behavioral effects observed in the rat phencyclidine (PCP)-induced model of schizophrenia; however, little is known about its in vivo neurochemistry. The study aims to compare the effects of cariprazine and aripiprazole on PCP-induced changes in the extracellular levels of glutamate, dopamine, serotonin, noradrenaline, and GABA in the rat medial prefrontal cortex (mPFC), and on locomotor activation. Microdialysis was performed in awake rats with probes placed into the mPFC. Rats (n = 7/group) received vehicle (saline), cariprazine (0.05, 0.2, or 0.8 mg/kg), or aripiprazole (3 or 20 mg/kg) via gavage. After 60 min, 5 mg/kg PCP was administered intraperitoneally (i.p.). Samples were taken before drug administration, during pretreatment, and after PCP injection. Locomotor activity recording and microdialysis sampling occurred simultaneously. PCP treatment increased extracellular levels of all the neurotransmitters tested except GABA, for which there were no significant changes. Cariprazine and aripiprazole dose-dependently inhibited the PCP-induced increases of tested neurotransmitters. Overall effects were significant for higher cariprazine doses and both aripiprazole doses for glutamate and noradrenaline, for higher cariprazine doses and 20 mg/kg aripiprazole for dopamine, and for 0.8 mg/kg cariprazine and 20 mg/kg aripiprazole for serotonin and locomotor activity. Both cariprazine and aripiprazole dose-dependently attenuated PCP-induced hyperlocomotion and acute increases in glutamate, dopamine, noradrenaline, and serotonin levels in the mPFC; cariprazine was approximately 5-fold more potent than aripiprazole

    Long-term effects of aripiprazole exposure on monoaminergic and glutamatergic receptor subtypes: comparison with cariprazine

    Get PDF
    OBJECTIVE: This study examined the chronic effects of aripiprazole and cariprazine on serotonin (5-HT1A and 5-HT2A) and glutamate (NMDA and AMPA) receptor subtypes. In addition, the effects of aripiprazole on D2 and D3 receptors were tested and compared with previously reported cariprazine data. METHODS: Rats received vehicle, aripiprazole (2, 5, or 15 mg/kg), or cariprazine (0.06, 0.2, or 0.6 mg/kg) for 28 days. Receptor levels were quantified using autoradiographic assays on brain sections from the medial prefrontal cortex (MPC), dorsolateral frontal cortex (DFC), nucleus accumbens (NAc), caudate-putamen medial (CPu-M), caudate-putamen lateral (CPu-L), hippocampal CA1 (HIPP-CA1) and CA3 (HIPP-CA3) regions, and the entorhinal cortex (EC). RESULTS: Similar to previous findings with cariprazine, aripiprazole upregulated D2 receptor levels in various regions; D3 receptor changes were less than those reported with cariprazine. All aripiprazole doses and higher cariprazine doses increased 5-HT1A receptors in the MPC and DFC. Higher aripiprazole and all cariprazine doses increased 5-HT1A receptors in HIPP-CA1 and HIPP-CA3. Aripiprazole decreased 5-HT2A receptors in the MPC, DFC, HIPP-CA1, and HIPP-CA3 regions. Both compounds decreased NMDA receptors and increased AMPA receptors in select brain regions. CONCLUSIONS: Long-term administration of aripiprazole and cariprazine had similar effects on 5-HT1A, NMDA, and AMPA receptors. However, cariprazine more profoundly increased D3 receptors while aripiprazole selectively reduced 5-HT2A receptors. These results suggest that the unique actions of cariprazine on dopamine D3 receptors, combined with its effects on serotonin and glutamate receptor subtypes, may confer the clinical benefits, safety, and tolerability of this novel compound in schizophrenia and bipolar mania

    Introduction of a pharmacological neurovascular uncoupling model in rats based on results of mice

    Get PDF
    Our aim was to establish a pharmacologically induced neurovascular uncoupling (NVU) method in rats as a model of human cognitive decline. Pharmacologically induced NVU with subsequent neurological and cognitive defects was described in mice, but not in rats so far. We used 32 male Hannover Wistar rats. NVU was induced by intraperitoneal administration of a pharmacological “cocktail” consisting of N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH, a specific inhibitor of epoxyeicosatrienoic acid-producing epoxidases, 5 mg kg−1), L-NG-nitroarginine methyl ester (L-NAME, a nitric oxide synthase inhibitor, 10 mg kg−1) and indomethacin (a nonselective inhibitor of cyclooxygenases, 1 mg kg−1) and injected twice daily for 8 consecutive days. Cognitive performance was tested in the Morris water-maze and fear-conditioning assays. We also monitored blood pressure. In a terminal operation a laser Doppler probe was used to detect changes in blood-flow (CBF) in the barrel cortex while the contralateral whisker pad was stimulated. Brain and small intestine tissue samples were collected post mortem and examined for prostaglandin E2 (PGE2) level. Animals treated with the “cocktail” showed no impairment in their performance in any of the cognitive tasks. They had higher blood pressure and showed cca. 50 decrease in CBF. Intestinal bleeding and ulcers were found in some animals with significantly decreased levels of PGE2 in the brain and small intestine. Although we could evoke NVU by the applied mixture of pharmacons, it also induced adverse side effects such as hypertension and intestinal malformations while the treatment did not cause cognitive impairment. Thus, further refinements are still required for the development of an applicable model
    corecore