27 research outputs found

    dphase_qbolam11: QBOLAM meteorological model (10km) run by APAT for the MAP D-PHASE project

    No full text
    Forecast data are modelled by the parallel version of the hydrostatic BOlogna Limited Area Model (BOLAM) operational at the Italian National Agency for Environmental Protection and Technical Services in Rome (Italy). This parallel version, called QBOLAM, is employed in an operational setting as a part of the Sistema Idro-Meteo-Mare (Hydro-Meteo-Marine System; SIMM) forecasting chain, with a 11-km grid step over a domain covering the entire Mediterranean basin. The QBOLAM11 model is forced with the QBOLAM33 forecast data, neglecting the first 12 hours (spin-up time), producing a 48-h forecast starting at 0000 UTC. The QBOLAM 33 runs are instead initialized using the 1200 UCT European Centre for Medium-Range Weather Forecasts analyses and forecasts. The SIMM modelling chain includes also a 10-km WAve model (WAM) over the Mediterranean Sea, a shallow-water version of the Princeton Ocean Model (POM) for sea elevation over the Adriatic Sea and a finite element model for sea elevation in the Venice Lagoon (VL-FEM). For DPHASE project, forecast data are provided over a subdomain (referred as DDOM) of the original domain (which covers the entire Mediterranean Basin). Forecast data will be also available on the COPS domain (referred as CDOM). Not all the meteorological fields selected for the experiment are provided, since some of these are not produced by the QBOLAM model. Grid description: Please note that the westermost longitude and the southermost latitude points refer to the sub-domain chosen for MAP DPHASE. The QBOLAM original domain covers the Mediterranean Basin. CDOM: xfirst: -6.0 yfirst: 8.4 xsize: 54.0 ysize: 27.0 xinc: 0.1 yinc: 0.1 xnpole: -167.5 ynpole: 51.5 DDOM: xfirst: -9.5 yfirst: 4.4 xsize: 147.0 ysize: 67.0 xinc:0.1 yinc: 0.1 xnpole: -167.5 ynpole: 51.

    dphase_qbolam33: QBOLAM meteorological modell (30km) run by APAT for the MAP D-PHASE project

    No full text
    Forecast data are modelled by a 30-km parallel version of the hydrostatic BOlogna Limited Area Model (BOLAM) operational at the National Agency for Environmental Protection and Technical Services (APAT) at Rome (Italy). This version, referred as 30-km QBOLAM model, is the driving model of the 11-km QBOLAM model which is described in the dphase_qbolam11 experiment. For DPHASE project, forecast data are provided over a subdomain (refered as DDOM) of the original domain (which covers the entire Mediterranean Basin). Not all the meteorological fields selected for the experiment are provided, since some of these are not produced by the QBOLAM model. Initial and boundary conditions for a 60-h QBOLAM33 forecast are derived from the European Centre for Medium-Range Weather Forecasts analysis and forecast issued at 1200 UTC on the previous day. Grid description: Please note that the westermost longitude and the southermost latitude points refer to the sub-domain chosen for MAP DPHASE. The QBOLAM original domain covers the Mediterranean Basin. DDOM: xfirst: -10.2 yfirst: 4.2 xsize: 54.0 ysize: 40.0 xinc: 0.3 yinc: 0.3 xnpole: -167.5 ynpole: 51.

    Urban air pollution and emergency room admissions for respiratory symptoms: a case-crossover study in Palermo, Italy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Air pollution from vehicular traffic has been associated with respiratory diseases. In Palermo, the largest metropolitan area in Sicily, urban air pollution is mainly addressed to traffic-related pollution because of lack of industrial settlements, and the presence of a temperate climate that contribute to the limited use of domestic heating plants. This study aimed to investigate the association between traffic-related air pollution and emergency room admissions for acute respiratory symptoms.</p> <p>Methods</p> <p>From January 2004 through December 2007, air pollutant concentrations and emergency room visits were collected for a case-crossover study conducted in Palermo, Sicily. Risk estimates of short-term exposures to particulate matter and gaseous ambient pollutants including carbon monoxide, nitrogen dioxide, and sulfur dioxide were calculated by using a conditional logistic regression analysis.</p> <p>Results</p> <p>Emergency departments provided data on 48,519 visits for respiratory symptoms. Adjusted case-crossover analyses revealed stronger effects in the warm season for the most part of the pollutants considered, with a positive association for PM<sub>10 </sub>(odds ratio = 1.039, 95% confidence interval: 1.020 - 1.059), SO<sub>2 </sub>(OR = 1.068, 95% CI: 1.014 - 1.126), nitrogen dioxide (NO<sub>2</sub>: OR = 1.043, 95% CI: 1.021 - 1.065), and CO (OR = 1.128, 95% CI: 1.074 - 1.184), especially among females (according to an increase of 10 μg/m<sup>3 </sup>in PM<sub>10</sub>, NO<sub>2</sub>, SO<sub>2</sub>, and 1 mg/m<sup>3 </sup>in CO exposure). A positive association was observed either in warm or in cold season only for PM<sub>10</sub>.</p> <p>Conclusions</p> <p>Our findings suggest that, in our setting, exposure to ambient levels of air pollution is an important determinant of emergency room (ER) visits for acute respiratory symptoms, particularly during the warm season. ER admittance may be considered a good proxy to evaluate the adverse effects of air pollution on respiratory health.</p
    corecore