176 research outputs found

    Phase Separation Induced by Ladder-Like Polymer-Polymer Complexation

    Get PDF
    Polymer-polymer complexation in solvent is studied using an extension of the self-consistent field theory. The model polymers are capable of forming ladder-like duplex structures. The duplex formation occurs with an abrupt change of entropy, resulting in a first-order transition. Moreover, the complexation can be stabilized by solvent-polymer interactions, instead of the usual specific binding interactions. Various types of unconventional phase diagrams are predicted. For example, phase separation with decreasing χ-parameter between duplex polymer and solvent can be induced, leading to a lower critical solution temperature (LCST) behavior. Multiphase coexistence points at which two, three, or four phases coexist are also obtained. Under certain conditions a homogeneous phase becomes unstable when the polymer chain length is decreased, in contrast to the standard Flory-Huggins theory

    Salt-doped block copolymers: ion distribution, domain spacing and effective χ parameter

    Get PDF
    We develop a self-consistent field theory for salt-doped diblock copolymers, such as polyethylene oxide (PEO)–polystyrene with added lithium salts. We account for the inhomogeneous distribution of Li+ ions bound to the ion-dissolving block, the preferential solvation energy of anions in the different block domains, the translational entropy of anions, the ion-pair equilibrium between polymer-bound Li+ and anion, and changes in the χ parameter due to the bound ions. We show that the preferential solvation energy of anions provides a large driving force for microphase separation. Our theory is able to explain many features observed in experiments, particularly the systematic dependence in the effective χ-parameter on the radius of the anions, the observed linear dependence in the effective χ on salt concentration, and increase in the domain spacing of the lamellar phase due to the addition of lithium salts. We also examine the relationship between two definitions of the effective χ parameter, one based on the domain spacing of the ordered phase and the other based on the structure factor in the disordered phase. We argue that the latter is a more fundamental measure of the effective interaction between the two blocks. We show that the ion distribution and the electrostatic potential profile depend strongly on the dielectric contrast between the two blocks and on the ability of the Li+ to redistribute along the backbone of the ion-dissolving block

    Self-consistent field theory of polymer-ionic molecule complexation

    Get PDF
    A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C_(i)^(a)(kΔ)(= 0 or 1), whose average determines the number of adsorbed molecules, nBI. Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for nBI are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtaine

    Phase diagrams of polymer-containing liquid mixtures with a theory-embedded neural network

    Get PDF
    We develop a deep neural network (DNN) that accounts for the phase behaviors of polymer-containing liquid mixtures. The key component in the DNN consists of a theory-embedded layer that captures the characteristic features of the phase behavior via coarse-grained mean-field theory and scaling laws and substantially enhances the accuracy of the DNN. Moreover, this layer enables us to reduce the size of the DNN for the phase diagrams of the mixtures. This study also presents the predictive power of the DNN for the phase behaviors of polymer solutions and salt-free and salt-doped diblock copolymer melts

    Thermodynamics of Ion-Containing Polymer Blends and Block Copolymers

    Get PDF
    We develop a theory for the thermodynamics of ion-containing polymer blends and diblock copolymers, taking polyethylene oxide (PEO), polystyrene and lithium salts as an example. We account for the tight binding of Li^+ ions to the PEO, the preferential solvation energy of anions in the PEO domain, the translational entropy of anions, and the ion-pair equilibrium between EO-complexed Li^+ and anion. Our theory is able to predict many features observed in experiments, particularly the systematic dependence in the effective χ parameter on the size of the anions. Furthermore, comparison with the observed linear dependence in the effective χ on salt concentration yields an upper limit for the binding constant of the ion pair
    corecore