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Abstract
Wedevelop a deep neural network (DNN) that accounts for the phase behaviors of polymer-
containing liquidmixtures. The key component in theDNNconsists of a theory-embedded layer that
captures the characteristic features of the phase behavior via coarse-grainedmean-field theory and
scaling laws and substantially enhances the accuracy of theDNN.Moreover, this layer enables us to
reduce the size of theDNN for the phase diagrams of themixtures. This study also presents the
predictive power of theDNN for the phase behaviors of polymer solutions and salt-free and salt-
doped diblock copolymermelts.

1. Introduction

The phase separation of polymer-containing liquidmixtures is ubiquitous over a broad spectrumof science and
engineering. It is necessary to analyze the abundant and diverse experimental data obtained concurrently;
however, this processmay be a daunting taskwhen experimental settings andmaterial properties are altered, and
simulationsmay not assess the relevant time scale of phase separation. Furthermore, accurate correspondence
among an experiment, theory, and simulation often becomes unclear.

Among others, as inmany other problems in physics, the study of phase separation and drawing phase
diagrams often faces the following challenges: (1) (Statistical) thermodynamic theoriesmay be constructed to
account for the transition between twophases observed in experiments. However, solving equations derived
from the theories often becomes a computationally intractable or daunting task. For example,molecular
theories in statistical thermodynamics, such as self-consistentmean-field theory, integral-equation theory, and
density-functional theory, are often invoked to consider liquid–liquid phase separation [1, 2]. However, various
situations can easily exponentially increase the complexity of the equations in the theories. Examples of the
relevant systems include highly branched polymers and semi-flexible polymers, to name a few. Thus,
computationally tractablemodels that encompass or approximate the theories are greatly needed. (2) It is often
challenging to construct amolecular theory that accounts for experimental data because the complete
mechanismof the phase separation is unclear. For example, block copolymer electrolytes [3, 4] and
nanoparticle-containing polymers [5–7] often fall in this class of system. In this case, wemay construct
phenomenologicalmodels, which are expected tomaximally involve underlying thermodynamic features in
experimental data. (3)Theories can be available, but experimental data for the phase diagramof the phase
separation are limited. To examine the theories, wemust extrapolate and/or interpolate the experimental data.
Indeed, small-angle x-ray scatterings and small-angle neutron scatterings are typically performed to analyze the
microphase separation of salt-doped block copolymers, but the overall phase diagrams are deduced from the
linear interpolation of the limited number of observed data points [8–10]. However, it is often impractical to
interpolate the phase boundaries according to underlying thermodynamic features in the targeted systems.
Typically,molecular interactions are significantly correlated through the chain connectivity of polymers, thus
substantially increasing difficultywith copingwith the three situations. This fact appears to suggest that amore
practical approach to addressing these situations regarding the phase behaviormay be constructed byweaving
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model-independentmethods, but the efficacy and feasibility of the approach should also be judged by the
computational effort required inmodeling and analysis.

In this article, we present a relativelymodel-independent approach to addressing the three issues by
developing a deep neural network (DNN) for the phase separation of both salt-free and salt-doped polymer-
containing liquids. In the current study, theDNNdoes not requiremany neurons and hidden layers and is thus
computationally feasible on commonworkstations. Note that convolutional neural networks consist of
convolutional and pooling layers for extracting the characteristic features of visual imagery and reducing the
dimensions of the input data [11]. Inspired by this perspective, we construct the first layer via coarse-grained
mean-field theory and scaling laws. This layer captures the representative features of target systems, such as the
entropy and enthalpy of polymermixtures and the dependence of the domain spacing of block copolymermelts
on salt concentrations. This layer also allows us to ease localminimumproblems in loss functions that evaluate
the accuracy ofNNs [11]. The output of ourDNNs is given by aGaussian functionwhose values are assigned to
phase behavior types, such as themacroscopic phase separation of polymer solutions and the ordered structures
of block copolymermelts. In this sense, phase diagrams per se are empirically embedded in theDNNs. Thus, we
must knowwhat type of phase separationmay occur prior to the calculation of theDNNs, but theDNNs enable
easier phase identification frommolecular properties.

NNs have drawn considerable attention in solving real-world problems over a broad spectrumof research
areas and have already shown their remarkable efficacy in solving practical scientific problems [12–22]. Early
examples formolecular separation include the study byDai, Sumpter andNoid, who developed an early type of
NN that accounted for the phase boundary of themacroscopic phase separation of binarymolten-saltmixtures
[23]. Later, NNswere used to consider the phase diagrams formicroemulsion-based drug delivery systems
involving oil, water and surfactants [24]. The architecture of theNNwas relatively simpler than those of the
recentDNNs, yet theNN, tunedwith only 171 training data points, became remarkably consistent with the
experimental pseudo-ternary phase diagrams. Several studies related tomicroemulsions for drug delivery
systems further provided the proof-of-concept thatNNsmay have excellent predictive power for the phase
behavior of liquidmixtures [25–30]. Nevertheless, the development ofNNs for the phase behavior of polymer-
containing liquidmixtures remains significantly limited. Part of the reason appears to arise from some technical
requirements that appear to substantially restrict the use ofNNs by non-experts inmachine learning. For
example, NNs are typically trained by a gradient-descent optimization algorithm such as a backpropagation
algorithmusing package code or computer software. However, loss functionsmay involvemany localminima,
which substantially declines the efficiency of the backpropagationmethod because the gradient descent gets
trapped in localminima.Moreover, the landscape of the loss function often hasmany saddle points, at which the
gradient becomes zero. This feature also significantly slows down the update process ofmodel parameters
(weights)when the backpropagation algorithm is invoked. Additionally, the initial guess of themodel
parameters is also often critical in trainingNNs. In this study, to circumvent orminimize these technical
concerns and implement relatively effortless and extensible programming, we perform an alternative approach
inwhichwe randomly search theweights without backpropagation algorithms.We show that the first layer, in
which thermodynamic theory is embedded, substantially enhances the efficiency of the random searches and
increases the accuracy of theDNNs.

2.Neural network for polymer solutions

OurDNN for both polymer solutions and diblock copolymermelts consists of three layers (figure 1). In this
study, we use three, ten, and two neurons in hidden layers 1, 2, and 3, respectively. For the input x in hidden
layers 2 and 3, we use the rectified linear unit (ReLU) ( )å +w x bReLU ij i j for activation functionswithweight
wij and bias b .j The key component in theDNN is the theory-embedded layer (hidden layer 1), which captures
the significance of physical properties and thus ‘speculates’ the characteristic features of the phase behaviors.
Here, the Flory–Huggins theory for polymer solutions suggests that (a) the overall trend of spinodal curves for
phase instability is substantially affected by the difference in the translational entropy between polymers and
solvents, (b) the chain length of polymers (or the degree of polymerization) plays a crucial role in producing
asymmetry in the shapes of spinodal curves and thus in determining the location of the critical point, and (c) the
phase boundary is determined by a delicate balance between the entropy and enthalpy of polymers and solvents.
Accordingly, we cast these three pieces of information into nonlinear functions:

( ) [( ) ( )]/f f f f= - -f ln 1 ln 1 ,1

/=f N1 ,2

2
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( ) ( )cf f= -f 1 , 13

wheref,N, andχ designate the volume fraction of polymers, the chain length of polymers, and the Flory
parameter formeasuring immiscibility between species, respectively. f1 and f3 calculate the ratio of the
translational entropies of incompressible polymers and solvents and the enthalpic contribution to the free
energy, respectively. Given thatM is the number of training data points, a loss function is defined as the relative
error /så M.i Here, s = 1i if the estimated and true values are different; otherwise, s = 0.i Weminimize the
loss function by randomly searching theweights [31]. To examine the efficacy of the theory-embedded layer, we
consider the following patterns: f1 is replaced by ( )f fln (pattern 1) and f=f ,1 =f N2 and c=f3 (pattern
2).We terminate a random search if the relative error is larger than 8%when ´2 106 trials are performed. The
success rate of the intact form is estimated at 8.7% frommore than 20 000 independent simulation runs for the
same training datasets, but that of pattern 1 and pattern 2 is 0%. Thus, pattern 1 and pattern 2 are unsuccessful
because they do not account for information about the balance between the entropies of polymers and solvents.

Note that standard neuronswith activation functions transmit a signal to other neuronswhen the strength of
the signal exceeds a certain threshold. Thus, themean-field theory incorporated in the theory-embedded layer
evaluates the qualities of the physical properties and transforms them into signals for hidden layer 2. If the signals
are significant enough to exceed the threshold in the activation functions, then theywill be further transmitted to
other neurons.

The output layer determines the phase behavior of polymer solutions by calculating aGaussian function

⎧⎨⎩
⎫⎬⎭( ) ( )å= -y w xexp . 2

i
i i

2

Here, a disordered (DIS) phase is assignedwhen the output <y 0.5; otherwise,macroscopic phase separation is
assigned.Note that we obtainmacroscopic phase separationwhen all weights wi are zero. Thus, gradually
increasing theweights wi from zero indicates that theDNN initiallyfits the training data points formacroscopic
phase separation and then gradually tunes theweights forDIS. Indeed, this fact provides a computational
advantage in performing a random search for theweights w .i Thus, we generate the initial values of wi from−1
to 1 and then perform random searches by calculating   Dw w ,i i whereΔ is a uniform randomnumber
between−1 and 1. If the relative errors are large after a certain number of trials, thenwe discard the trial process
and generate another initial value. This approach is used because training datasets often involve the deep local
minima of the loss function.However, if the initial values are appropriately set, then a random search can be
finished quickly; for example, in certain cases, the search can befinished evenwithin a few seconds. Here, the
current study employed standardCPU cores (Intel Sandy Bridge E5-2670 2.60GHz or equivalent). The theory-
embedded layer allows us to promptly reach relative errors of less than 5%. The computational time for a single
run typically ranges from a few seconds to nomore than a fewhours throughout this article. Thus, our random
searchwith theGaussian function is computationally feasible on standardworkstations.

We provide the training and test datasets for the phase behavior using the Flory–Huggins theory as follows:

we calculate the free energy ( ) ( ) ( ) ( )f f f cf f= + - - + -fF ln 1 ln 1 1
N

and collect the information of

whether polymer solutions phase separate or not (i.e. a ‘yes/no’ data type) by calculating spinodal curves using F
[32, 33]. Thefirst, second, and third terms account for the translational entropies of polymers and solvents and
the intermolecular interaction, respectively. The intervals off andχ are 0.05, andf andχ range from0 to 1 and

Figure 1.Deep neural network for the phase behavior of polymer-containing liquidmixtures. The theory-embedded layer (hidden
layer 1) captures the significance of physical properties. This layermay also be fully connected to the input layer. Hidden layers 2 and 3
serve as standard layers.

3
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0 to 3, respectively. Our rationale for examining theDNNswith the Flory–Huggins theory is that the theory can
capture the shift in the critical point in the phase diagrams as the chain lengthN of polymers is increased.
Accordingly, the spinodal curves becomemore asymmetric asN is increased. This characteristic feature is
indeed observed in experiments for polymer solutions, andwe suggest that whether theDNNs can capture this
characteristic feature should provide a benchmark for the efficacy of theDNNs. The chain lengths areN=1 for
nonpolymeric liquids and 30 for polymer solutions. Figure 2 shows the phase diagrams produced by theDNN.
The relative error is 0.094%. The agreement between the predictions of theDNNand the test datasets is excellent
within c3. TheDNNalso predicts the phase behaviors forN=1 and 30 in the range of 3 c< 5, and the
results are in excellent agreement with the test datasets.Moreover, theDNNpredicts the phase behaviors for
N=10 and 100 remarkably accurately.

3.Neural network for salt-free block copolymermelts

Wecan also directly apply ourDNN shown infigure 1 to the phase behavior of incompressible, symmetric
diblock copolymermelts. The inputs are the volume fraction of block Af, the chain lengths of blocks A andBN,
and the Flory parameterχ. Thus, no essential changes in theDNN for polymer solutions are necessary. The
value y of theGaussian function in the output layer is defined as follows: 0< y� 0.2 forDIS, 0.2< y� 0.4 for
body-centered-cubic (BCC) phases, 0.4< y� 0.6 for hexagonally packed cylinder (HEX) phases, 0.6< y� 0.8
for gyroid (GYR) phases, and 0.8< y� 1 for lamellar (LAM) phases.We have assigned these ranges heuristically,

Figure 2.Phase diagrams of polymer solutions. The training data points exist below c = 3 (blue dashed lines in the left twofigures).
TheDNNgenerates the black regions formacroscopic phase separation, which consist of dense data points that form ‘strip’ structures
in the y-direction. The Flory–Huggins theory provides the spinodal curves (red solid lines), abovewhichmacroscopic phase separation
occurs. TheDNNpredicts the right twofigures.
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butwe have not encountered any inconvenience in this study.We consider the following characteristic features
of the phase behavior of diblock copolymermelts: (a) the translational entropy of each block, (b) the enthalpic
interaction between the two blocks, and (c) the interfacial width between the two blocks in the ordered
structures. A scaling law suggests that the interfacial width in the ordered structures scales with ( )c» -N 0.5 for
weakly segregated diblock copolymers [34]. Accordingly, we set

( ) ( ) ( )f f f f= + - -f ln 1 ln 1 ,1

( )cf f= -f 1 ,2

( ) ( )c= -f N . 33
0.5

The optimization performance was not sensitive to the exponent in f .3 This study also examined several other
functional forms for f ,i which did not adequately capture the qualitative features of block copolymermelts, but
those functional forms failed to tune theDNN.However, once the fi suggested abovewas used, the performance
drastically increased, and tuning theweights with high accuracy became achievable. To evaluate the efficacy of
f ,i a random searchwas terminated after ´5 107 trials if the relative errorwas larger than 5%.The success rate
was 0.23%out of 3047 trials, whereas that of the other patterns was 0%.

The training and test datasets for the phase behaviorwere produced using the Landau theory ofmicrophase
separation developed by Leibler [35] andHamley and Podneks [36]. In these theories, we can calculate the free
energies for the ordered structures of block copolymermelts usingmean-field approximations and draw the
phase boundaries of the ordered structures. The theories are well known to qualitatively capture the
experimental phase diagrams of diblock copolymermelts. Thus, we suggest that the datasets derived from these
theories serve as a goodmodel system to examine ourDNNs. The training dataset consists of 365 data points
equally spaced in 0 f  1 and 0 c 0.3. The chain length of a block copolymer isN=100. Figure 3 shows the
phase diagramdrawn by theDNN.The relative error is 3.84%. The predictions of theDNN in 0.3 c< 3 are
remarkably consistent with the test dataset. The test dataset shows that BCC exists between the purple and blue
lines, but this area is quite narrow.Nevertheless, theDNNalso adequately captures this feature and compares
favorablywith the test dataset, providing purple dots for BCC at, for example, f= 0.05 and 0.95. This study
examined several other sets of weights with relative errors less than 5%, and the predictive powerwas
equivalently goodwhen c2. Thus, the predictions of theDNNare relatively robust in considering the phase
behavior of block copolymermelts.

4.Neural network for salt-doped block copolymermelts

Wealso examine the efficacy and predictive power of ourDNN for experiments, taking the phase behavior of
lithium salt-doped PEO-b-PS diblock copolymermelts as an example [9]. This system exhibits disorder–order
and various order–order phase transitions. However, reproducing the experimental observations and

Figure 3.Phase diagramof diblock copolymermelts. The training dataset exists below c = 0.3 (yellow dashed line). TheDNN
predicts the phase behavior above c = 0.3.The Landau theory provides the phase boundaries betweenGYR and LAM (red), HEX and
GYR (green), BCC andHEX (blue), andDIS andBCC (purple). Data points: LAM (red), GYR (green), HEX (blue), BCC (purple), and
DIS (black).

5
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understanding the true nature of the phase behaviors by existing theories andmolecular simulations remain
significantly limited, primarily because both computational and theoreticalmodeling and calculations are
challenging. Note that themicrophase separation of this system can be characterized by (a) the translational
entropy of the salt ions r rln , (b) the enthalpic contribution due to the solvation energy of the salt ions, and (c)
the interfacial width between the two blocks ( )c -N .eff

0.5 Here, r is the salt loading defined as the ratio of the Li+

and EOmonomer concentrations r=[Li+]/[EO], and ceff is the effective Flory parameter for the salt-doped
block copolymers and is shown to scale as (c c-eff )µr experimentally [9, 37] and theoretically [38].Mean-
field theory suggests that the Born solvation energy, which is proportional to the salt concentration r,
qualitatively accounts for the experimental data [38]. Accordingly, we set

=f r rln ,1

=f ar2

according to the Born solvation energy form, and

( ) ( )c= -f N , 53 eff
0.5

where c c= + br.eff Both experimental and theoretical studies have suggested that b is on the order of unity;
thus, we use b=1. The Born solvation energy suggests that a is on the order of 10; thus, we use a=15.Here, a
varied from a=1 to a=100, but therewas no substantial difference in optimization speed. As in the cases of
the polymer solutions and the salt-free diblock copolymermelts, we also examined six different cases for a
combination of the fi (table 1), which resulted in significantly poor success rates. Figure 4(a) illustrates our
training dataset, consisting of 567 data points constructed from [9]. TheDNNused infigure 4(b) is tunedwith a
relative error of 5% and corresponds reasonably well with the experimental data. Although this study examined
more than ten other sets of weights with similar accuracy,most of the results compared favorablywith the
experimental data.

Of particular interest is the predictive power of theDNNwhen experimental data points are limited. To this
end, we consider two limiting cases anticipated from statistical thermodynamics as follows: (1) the phase
behavior exhibits DIS in the high-temperature limit, and (2)when the salt concentration is high enough to form
an ionic liquid and no additional interaction is considered, the systembecomes a dilute block copolymer
solution and should exhibit DIS. In the current study, we add these data points to the training datasets as a
regularization scheme [39].

Wefirst tune theDNN for onlyDIS, LAM, andHEX, and not forGYR,with the additional data points from
item (1). Figures 4(c) and (d) show our representative results. TheDNNpredicts GYR around the region at
[Li+]/[EO]=0.05 andT=130 °C, as observed in the experiments. Thus, theDNN supports the experimental
observation ofGYR. This result indicates that evenwithout experimental data forGYR, given information about
some other phase behaviors, theDNNs can suggest the location ofGYR in the phase diagrams.We suggest that
this factmay substantially reduce various experimental costs andmay becomeuseful whenwe explore phases
that cannot be easily accessed by experiments andmolecular simulations. This study examinedmore than ten
different types of weights with relative errors less than 5%, but all cases predictedGYRnear this region.Here, the
success rate became 2.03×(%error)− 8.22 and 28.96×(%error−7.5)0.5965+7.11when (%error)�7.5%
and (%error)>7.5%, respectively. The slope of the success rate was discontinuous at 7.5%. Similarly, using the
additional data points from item (2), theDNNpredicts thatHEXoccurs as the salt concentration increases. This
result, including the overall trend of the phase boundary ofHEX, also correspondswell with the experimental
data shown infigure 4(a). Here, nineteen out of twenty-three different sets of weights with relative errors less
than 5%predictedHEXwith reasonable salt concentrations and temperatures.We attribute these reasonable,
robust predictions regardingGYR andHEXprimarily to the addition of the data points from the limiting cases.
For cross validation, we randomly obtained the training data points again, but the overall conclusion remained
unchanged. Note that in general, the predicted overall phase diagramsmay become patchy and hence

Table 1.Unsuccessful trial patterns of fi versus the success rate. A random
searchwas terminated after ´5 107 trials if the relative errorwas larger
than 10%.

f1 f2 f3 Success rate%

Pattern 1 r N c 0

Pattern 2 /r N /N1 cr 0

Pattern 3 /r N 0 cr 0

Pattern 4 r /N1 /c r 0

Pattern 5 r /N1 c+r 0

Pattern 6 rln r15 ( )/ c+N r1 0.03

6
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qualitatively unacceptable evenwhen training datasets precisely agree with test datasets. This unexpected
discrepancy is known in statistics as overfitting, but we have not encountered this problem in this study. Thus,
the currentDNNs are robust enough to draw the phase diagrams.

5. Conclusions

In conclusion, we have developedDNNs that enable drawing the phase diagrams of polymer-containing liquids
when the volume fraction (or density) of species, chain length, and the Flory–Huggins parameterχ (or
temperature) are provided. The present study aimed to provide a computationally tractablemethod that (1)
enables studying the phase behaviors that existingmolecular theory and simulation cannot easily access and (2)
approximates existing (statistical) thermodynamicmodels while retaining underlying thermodynamic features
in targeted systems. A theory-embedded layer that captures thermodynamically important features viamean-
field theory and scaling lawswas incorporated into aDNN, thus allowing us to describe the phase diagrams of
polymer solutions and salt-free and salt-doped diblock copolymermelts. Appropriate construction of this layer
significantly speeds upweight optimization and reduces the size of theDNNs, whereas the layer design is not
unique. Thus, the design of the theory-embedded layermay become heuristic when applied to other problems.
The present study focused on the feedforward network andReLU for activation functions to consider themost
straightforward network systems for conciseness. The effect of the theory-embedded layer on the network
performance of other neural network architectures should also be of further interest in future studies. Given that
theDNN is tuned, the phase diagrams can be reproducedwithout implementing advanced theories and

Figure 4.Phase diagrams of lithium salt-doped PEO-b-PSmelts. DIS (black), LAM (red), GYR (green), andHEX (blue). (a)The
experimental results. (b)TheDNN tunedwith all the experimental data points. (c)The prediction ofGYR. (d)The prediction ofHEX.
The relative errors are less than 5%. TheDNNgenerates dense data points that form ‘strip’ structures in the y-direction.
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molecular simulations.Moreover, ourDNNhas predictive power and can assist in exploring newphase
behaviors in polymer-containing liquidmixtures. Finally, we expect that the currentDNNs can be extended to
study inverse problems in soft-matter physics [40] that cannot be easily addressed by existing theories and
molecular simulations. Specifically, it would be interesting to examinewhether theDNNs can predict the chain
length and composition of polymers when a particular phase at a specific temperature is given.
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