5 research outputs found

    Network modelling for road-based Faecal Sludge Management

    Get PDF
    Improvements in the collection and treatment of sewage are critical to reduce health and environmental hazards in rapidly-urbanising informal settlements. Where sewerage infrastructure is not available, road-based Fecal Sludge Management options are often the only alternative. However, the costs of fecal sludge transportation are often a barrier to their implementation and operation and thus it is desirable to optimise travel time from source to treatment to reduce costs. This paper presents a novel technique, employing spatial network analysis, to optimise the spatio-topological configuration of a road-based fecal sludge transportation network on the basis of travel time. Using crowd-sourced spatial data for the Kibera settlement and the surrounding city, Nairobi, a proof-of-concept network model was created simulating the transport of waste from the 158 public toilets within Kibera. The toilets are serviced by vacuum pump trucks which move fecal sludge to a transfer station from where a tanker transports waste to a treatment plant. The model was used to evaluate the efficiency of different network configurations, based on transportation time. The results show that the location of the transfer station is a critical factor in network optimisation, demonstrating the utility of network analysis as part of the sanitation planning process

    Crossfire: 'Carbon mitigation funds can be used as an important vehicle to deliver the water and sanitation targets of the MDGs'

    No full text
    In our debate between two experts, Crossfire invites Julian Caldecott to debate with Ed Stentiford and Iole Issaias the following: 'Carbon mitigation funds can be used as an important vehicle to deliver the water and sanitation targets of the MDGs'

    Carbon - Making the right choice for waste management in developing countries

    No full text
    Due to initiatives such as the clean development mechanism (CDM), reducing greenhouse gas emissions for a developing country can offer an important route to attracting investment in a variety of qualifying project areas, including waste management. To date CDM projects have been largely confined to schemes that control emission from landfill, but projects that avoid landfilling are beginning to be submitted. In considering the waste options which might be suitable for developing countries certain ones, such as energy from waste, have been discounted for a range of reasons related primarily to the lack of technical and other support services required for these more sophisticated process trains. The paper focuses on six options: the base case of open dumping; three options for landfill (passive venting, gas capture with flaring, and gas capture with energy production), composting and anaerobic digestion with electricity production and composting of the digestate. A range of assumptions were necessary for making the comparisons based on the effective carbon emissions, and these assumptions will change from project to project. The highest impact in terms of carbon emissions was from using a sanitary landfill without either gas flaring or electricity production; this was worse than the baseline case using open dumpsites. Landfills with either flaring or energy production from the collected gas both produced similar positive carbon emissions, but these were substantially lower than both open dumping and sanitary landfill without flaring or energy production. Composting or anaerobic digestion with energy production and composting of the digestate were the two best options with composting being neutral in terms of carbon emissions and anaerobic digestion being carbon negative. These generic conclusions were tested for sensitivity by modifying the input waste composition and were found to be robust, suggesting that subject to local study to confirm assumptions made, the opportunity for developing CDM projects to attract investment to improved waste management infrastructure is significant. Kyoto credits in excess of 1 tCO2e/t of waste could be realised

    The sand and gravel resources of the country around Coningsby, Lincolnshire Description of 1: 25 000 sheet TF 25

    No full text
    11.75SIGLELD:5776.72(IGS-MAR--128) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore