17 research outputs found

    Near-threshold electron injection in the laser-plasma wakefield accelerator leading to femtosecond bunches

    Get PDF
    We gratefully acknowledge the support of the UK EPSRC (grant no. EP/J018171/1), the EU FP7 programmes: the Extreme Light Infrastructure (ELI) project, the Laserlab-Europe (no. 284464), and the EUCARD-2 project (no. 312453).The laser-plasma wakefield accelerator is a compact source of high brightness, ultra-short duration electron bunches. Self-injection occurs when electrons from the background plasma gain sufficient momentum at the back of the bubble-shaped accelerating structure to experience sustained acceleration. The shortest duration and highest brightness electron bunches result from self-injection close to the threshold for injection. Here we show that in this case injection is due to the localized charge density build-up in the sheath crossing region at the rear of the bubble, which has the effect of increasing the accelerating potential to above a critical value. Bunch duration is determined by the dwell time above this critical value, which explains why single or multiple ultra-short electron bunches with little dark current are formed in the first bubble. We confirm experimentally, using coherent optical transition radiation measurements, that single or multiple bunches with femtosecond duration and peak currents of several kiloAmpere, and femtosecond intervals between bunches, emerge from the accelerator.Publisher PDFPeer reviewe

    High quality electron beams from a laser wakefield accelerator

    No full text
    Very stable, high quality electron beams (current ∼ 10 kA, energy spread < 1%, emittance ∼ 1π mm mrad) have been generated in a laser-plasma accelerator driven by 25 TW femtosecond laser pulses

    Optical diagnostics of laser-produced plasmas

    No full text
    Laser-produced plasmas (LPPs) engulf exotic and complex conditions ranging in temperature, density, pressure, magnetic and electric fields, charge states, charged particle kinetics, and gas-phase reactions based on the irradiation conditions, target geometries, and background cover gas. The application potential of the LPP is so diverse that it generates considerable interest for both basic and applied research areas. The fundamental research on LPPs can be traced back to the early 1960s, immediately after the invention of the laser. In the 1970s, the laser was identified as a tool to pursue inertial confinement fusion, and since then several other technologies have emerged out of LPPs. These applications prompted the development and adaptation of innovative diagnostic tools for understanding the fundamental nature and spatiotemporal properties of these complex systems. Although most of the traditional characterization techniques developed for other plasma sources can be used to characterize the LPPs, care must be taken to interpret the results because of their small size, transient nature, and inhomogeneities. The existence of the large spatiotemporal density and temperature gradients often necessitates nonuniform weighted averaging over distance and time. Among the various plasma characterization tools, optical-based diagnostic tools play a key role in the accurate measurements of LPP parameters. The optical toolbox contains optical spectroscopy (emission, absorption, and fluorescence), as well as passive and active imaging and optical probing methods (shadowgraphy, Schlieren imaging, interferometry, Thomson scattering, deflectometry, and velocimetry). Each technique is useful for measuring a specific property, and its use is limited to a certain time span during the LPP evolution because of the sensitivity issues related to the selected measuring tool. Therefore, multiple diagnostic tools are essential for a comprehensive insight into the entire plasma behavior. Recent improvements in performance in laser and detector systems have expanded the capability of the aforementioned passive and active diagnostic tools. This review provides an overview of optical diagnostic tools frequently employed for the characterization of the LPPs and emphasizes techniques, associated assumptions, and challenges. Considering that most of the industrial and other applications of the LPP belong to low to moderate laser intensities (108-1015 W cm-2), this review focuses on diagnostic tools pertaining to this regime. © 2022 American Physical Society.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Plasma characterization with terahertz time-domain measurements

    No full text
    Terahertz time-domain spectral techniques are applied to the characterization of a He discharge plasma. Electro-optically sampling of the electric field of a quasi-unipolar terahertz pulse transmitted through the plasma has allowed both the real and imaginary parts of the plasma permittivity to be simultaneously measured over a large spectral range. The plasma density and the collisional frequency are determined within a 30 ps duration measurement window. An anomalously high collisional frequency has been measured

    The Strathclyde terahertz to optical pulse source (TOPS)

    No full text
    We describe the newly created free-electron laser facility situated at the University of Strathclyde in Scotland, which will produce ultra-short pulses of high-power electromagnetic radiation in the terahertz frequency range. The FEL will be based on a 4 MeV photoinjector producing picosecond 1 nC electron pulses and driven by a frequency tripled Ti:sapphire laser thus ensuring synchronism with conventional laser based tuneable sources. A synchronised multi-terawatt Ti:sapphire laser amplifier will be used in the study of laser/plasma/electron beam interactions and as a plasma based X-ray source. A substantial user commitment has already been made in support of the programme

    Characterisation of electron beams from laser-driven particle accelerators

    No full text
    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators

    Professional advice and services A good practice guide

    Get PDF
    Commissioned by the Further Education Funding Council and National Audit Office, prepared by Sterling Management Consultants LtdAvailable from British Library Document Supply Centre-DSC:m00/13880 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Near-threshold electron injection in the laser-plasma wakefield accelerator leading to femtosecond bunches

    No full text
    The laser-plasma wakefield accelerator is a compact source of high brightness, ultra-short duration electron bunches. Self-injection occurs when electrons from the background plasma gain sufficient momentum at the back of the bubble-shaped accelerating structure to experience sustained acceleration. The shortest duration and highest brightness electron bunches result from self-injection close to the threshold for injection. Here we show that in this case injection is due to the localized charge density build-up in the sheath crossing region at the rear of the bubble, which has the effect of increasing the accelerating potential to above a critical value. Bunch duration is determined by the dwell time above this critical value, which explains why single or multiple ultra-short electron bunches with little dark current are formed in the first bubble. We confirm experimentally, using coherent optical transition radiation measurements, that single or multiple bunches with femtosecond duration and peak currents of several kiloAmpere, and femtosecond intervals between bunches, emerge from the accelerator
    corecore