50 research outputs found

    Probable neuroimmunological link between Toxoplasma and cytomegalovirus infections and personality changes in the human host

    Get PDF
    BACKGROUND: Recently, a negative association between Toxoplasma-infection and novelty seeking was reported. The authors suggested that changes of personality trait were caused by manipulation activity of the parasite, aimed at increasing the probability of transmission of the parasite from an intermediate to a definitive host. They also suggested that low novelty seeking indicated an increased level of the neurotransmitter dopamine in the brain of infected subjects, a phenomenon already observed in experimentally infected rodents. However, the changes in personality can also be just a byproduct of any neurotropic infection. Moreover, the association between a personality trait and the toxoplasmosis can even be caused by an independent correlation of both the probability of Toxoplasma-infection and the personality trait with the third factor, namely with the size of living place of a subject. To test these two alternative hypotheses, we studied the influence of another neurotropic pathogen, the cytomegalovirus, on the personality of infected subjects, and reanalyzed the original data after the effect of the potential confounder, the size of living place, was controlled. METHODS: In the case-control study, 533 conscripts were tested for toxoplasmosis and presence of anti-cytomegalovirus antibodies and their novelty seeking was examined with Cloninger's TCI questionnaire. Possible association between the two infections and TCI dimensions was analyzed. RESULTS: The decrease of novelty seeking is associated also with cytomegalovirus infection. After the size of living place was controlled, the effect of toxoplasmosis on novelty seeking increased. Significant difference in novelty seeking was observed only in the largest city, Prague. CONCLUSION: Toxoplasma and cytomegalovirus probably induce a decrease of novelty seeking. As the cytomegalovirus spreads in population by direct contact (not by predation as with Toxoplasma), the observed changes are the byproduct of brain infections rather than the result of manipulation activity of a parasite. Four independent lines of indirect evidence, namely direct measurement of neurotransmitter concentration in mice, the nature of behavioral changes in rodents, the nature of personality changes in humans, and the observed association between schizophrenia and toxoplasmosis, suggest that the changes of dopamine concentration in brain could play a role in behavioral changes of infected hosts

    Stress Biomarkers as Outcomes for HIV+ Prevention: Participation, Feasibility and Findings Among HIV+ Latina and African American Mothers

    Get PDF
    Mothers living with HIV (MLH) are at high risk for acute and chronic stress, given challenges related to their HIV status, ethnicity, economic and urban living conditions. Biomarkers combined into a composite index show promise in quantifying psychosocial stress in healthy people, but have not yet been examined among MLH. According, we examined potential biomarker correlates of stress [cortisol and catecholamines from home-collected urine and basic health indicators (blood pressure, height and weight, waist-to-hip ratio) measured during an interview] among 100 poor African American and Latina mothers MLH and demographic-matched control mothers without HIV (n = 50). Participants had been enrolled in a randomized controlled trial about 18 months earlier and had either received (MLH-I) or were awaiting (MLH-W) the psychosocial intervention. Participation was high, biomarkers were correctly collected for 93% of cases, and a complete composite biomarker index (CBI) calculated for 133 mothers (mean age = 42). As predicted, MLH had a significantly higher CBI than controls, but there was no CBI difference across ethnicity or intervention group. CBI predicted CD4 counts independently after controlling for age, years since diagnosis, prior CD4 counts, medication adherence, and depression symptoms. The study demonstrates acceptability, feasibility and potential utility of community-based biomarker collections in evaluating individual differences in psychosocial stress

    Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice

    Get PDF
    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection

    Some Aspects of Protozoan Infections in Immunocompromised Patients: A Review

    Full text link

    Predominant Interferon-γ-Mediated Expression of CXCL9, CXCL10, and CCL5 Proteins in the Brain During Chronic Infection with Toxoplasma gondii in BALB/c Mice Resistant to Development of Toxoplasmic Encephalitis

    No full text
    We examined the role of interferon-γ (IFN-γ) in expression of chemokine mRNA and proteins in the brain during chronic infection with Toxoplasma gondii using BALB/c and BALB/c-background IFN-γ knockout (IFN-γ−/−) mice. BALB/c mice are genetically resistant to development of toxoplasmic encephalitis and establish a latent, chronic infection in the brain through IFN-γ-mediated immune responses. Amounts of mRNA for CXCL9/MIG, CXCL10/IP-10, CXCL11/I-TAC, CCL2/MCP-1, CCL3/MIP-1α, and CCL5/RANTES significantly increased in the brains of wild-type mice after infection. CXCL9/MIG, CXCL10/IP-10, and CCL5/RANTES mRNA were most abundant among these chemokines. An increase in amounts of mRNA for CXCL10/IP-10, CCL2/MCP-1, CCL3/MIP-1α, and CCL5/RANTES was also observed in the brains of IFN-γ−/− mice after infection, although CXCL10/I-10 and CCL5/RANTES mRNA levels in infected IFN-γ−/− mice were significantly lower than those of infected wild-type animals. Amounts of mRNA for CXCL9/MIG and CXCL11/I-TAC remained at the basal levels in infected IFN-γ−/− mice. When amounts of the chemokine proteins were examined in the brain homogenates of uninfected and infected mice of both strains, large amounts of CXCL9/MIG, CXCL10/IP-10, and CCL5/RANTES were detected only in infected wild-type animals. These results indicate that CXCL9/MIG, CXCL10/IP-10, and CCL5/RANTES are the chemokines predominantly induced in the brains of genetically resistant BALB/c mice during chronic infection with T. gondii, and their expression is dependent on IFN-γ
    corecore