406 research outputs found

    Recent Developments in Complex and Spatially Correlated Functional Data

    Full text link
    As high-dimensional and high-frequency data are being collected on a large scale, the development of new statistical models is being pushed forward. Functional data analysis provides the required statistical methods to deal with large-scale and complex data by assuming that data are continuous functions, e.g., a realization of a continuous process (curves) or continuous random fields (surfaces), and that each curve or surface is considered as a single observation. Here, we provide an overview of functional data analysis when data are complex and spatially correlated. We provide definitions and estimators of the first and second moments of the corresponding functional random variable. We present two main approaches: The first assumes that data are realizations of a functional random field, i.e., each observation is a curve with a spatial component. We call them 'spatial functional data'. The second approach assumes that data are continuous deterministic fields observed over time. In this case, one observation is a surface or manifold, and we call them 'surface time series'. For the two approaches, we describe software available for the statistical analysis. We also present a data illustration, using a high-resolution wind speed simulated dataset, as an example of the two approaches. The functional data approach offers a new paradigm of data analysis, where the continuous processes or random fields are considered as a single entity. We consider this approach to be very valuable in the context of big data.Comment: Some typos fixed and new references adde

    Lorentzian and signature changing branes

    Full text link
    General hypersurface layers are considered in order to describe brane-worlds and shell cosmologies. No restriction is placed on the causal character of the hypersurface which may thus have internal changes of signature. Strengthening the results in our previous letter [1], we confirm that a good, regular and consistent description of signature change is achieved in these brane/shells scenarios, while keeping the hypersurface and the bulk completely regular. Our formalism allows for a unified description of the traditional timelike branes/shells together with the signature-changing, or pure null, ones. This allows for a detailed comparison of the results in both situations. An application to the case of hypersurface layers in static bulks is presented, leading to the general Robertson-Walker geometry on the layer --with a possible signature change. Explicit examples on anti de Sitter bulks are then studied. The permitted behaviours in different settings (Z2Z_{2}-mirror branes, asymmetric shells, signature-changing branes) are analysed in detail. We show in particular that (i) in asymmetric shells there is an upper bound for the energy density, and (ii) that the energy density within the brane vanishes when approaching a change of signature. The description of a signature change as a `singularity' seen from within the brane is considered. We also find new relations between the fundamental constants in the brane/shell, its tension, and the cosmological and gravitational constants of the bulk, independently of the existence or not of a change of signature.Comment: 23 pages, 2 figure

    Safety and efficacy of nateglinide/metformin combination therapy in the treatment of type 2 diabetes

    Get PDF
    The increasing prevalence of type 2 diabetes provides impetus for both development of new drugs to improve glycemic control and for reconsideration of treatment strategies with existing agents. Combination therapy with complementary drug classes that act on different aspects of glycemic control has been a particularly effective strategy. This work reviews the published literature reporting efficacy and safety/tolerability of nateglinide, a rapid-onset insulinotropic agent with a predominant effect to reduce postprandial glucose, when combined with metformin, a first-line agent that suppresses hepatic glucose production and thereby reduces fasting plasma glucose. The nateglinide/metformin combination has consistently been found to be both efficacious and well tolerated, whether given as initial combination therapy in drug-naïve patients or when added to metformin monotherapy. Maximum efficacy (Δ glycosylated hemoglobin [HbA1c]= −1.4% to −1.9%, sustained for up to 2 years of treatment) was seen in studies of drug-naïve patients in whom pharmacotherapy was initiated with the combination of nateglinide and metformin, and modest reductions in HbA1c (Δ = −0.5% to −1.2%, sustained for up to 24 weeks) were found when nateglinide was added to ongoing metformin monotherapy

    Location in Ad Hoc Networks

    Get PDF
    corecore