47 research outputs found

    High-power ECH and fully non-inductive operation with ECCD in the TCV tokamak

    Get PDF
    Experiments with high-power electron cyclotron heating (ECH) and current drive (ECCD) in the TCV tokamak are discussed. Power up to 2.7 MW from six gyrotrons is delivered to the tokamak at the second-harmonic frequency (82.7 GHz) in X-mode. The power is transmitted to the plasma by six independent launchers, each equipped with steerable mirrors that allow a wide variety of injection angles in both the poloidal and toroidal directions. Fully non-inductive operation of the tokamak has been achieved in steady state, for the full 2 s gyrotron pulse duration, by co-ECCD with a highest current to date of 210 kA at full power. The experimentally measured ECCD efficiency agrees well with predictions obtained from linear modelling. We have observed that the highest global efficiency attainable at a given power is limited by stability constraints. While the efficiency is maximum bn the magnetic axis, a disruptive MHD instability occurs when the width of the deposition profile is lower than a minimum value, which increases with total power. Many ECCD discharges display a high level of electron energy confinement, enhanced by up to a factor of two over the Rebut-Lallia-Watkins (RLW) scaling law, which by contrast is well satisfied in ohmic conditions. The longest confinement times (up to four times RLW) are observed with central counter-ECCD. Central electron heat diffusivities comparable to ohmic levels are obtained in these scenarios, with electron temperatures in excess of 10 keV

    Recent results from the electron cyclotron heated plasmas in Tokamak Ă  Configuration Variable (TCV)

    Get PDF
    In noninductively driven discharges, 0.9 MW second harmonic (X2) off-axis co-electron cyclotron current drive deposition is combined with 0.45 MW X2 central heating to create an electron internal transport barrier (eITB) in steady plasma conditions resulting in a 1.6-fold increase of the confinement time (tau(Ee)) over ITER-98L-mode scaling. The eITB is associated with a reversed shear current profile enhanced by a large bootstrap current fraction (up to 80%) and is sustained for up to 10 current redistribution times. A linear dependence of the confinement improvement on the product of the global shear reversal factor (q(0)/q(min)) and the reversed shear volume (rho(q-min)(2)) is shown. In other discharges heated with X2 the sawteeth are destabilized (respectively stabilized) when heating just inside (respectively outside) the q=1 surface. Control of the sawteeth may allow the avoidance of neoclassical tearing modes that can be seeded by the sawtooth instability. Results on H-mode and highly elongated plasmas using the newly completed third harmonic (X3) system and achieving up to 100% absorption are also discussed, along with comparison of experimental results with the TORAY-GA ray tracing code [K. Matsuda, IEEE Trans. Plasma Sci. PS-17, 6 (1989); R. H. Cohen, Phys. Fluids 30, 2442 (1987)]. (C) 2003 American Institute of Physics

    CFD motivated applications of model order reduction

    No full text
    The ongoing advances in numerical mathematics and available computing power combined with the industrial needs promote a development of more and more complex models. However, such models are, due to their complexity, expensive from the point of view of the data storage and the time necessary for their evaluation. The model order reduction (MOR) seeks to reduce the computational complexity of large scale models. We present an approach to MOR based on the proper orthogonal decomposition (POD) with Galerkin projection. The problems arising from the nonlinearities present in the original model are adressed within the framework of the discrete empirical interpolation method (DEIM). The main contribution of this work consists in providing a link between the POD-DEIM based MOR and OpenFOAM. OpenFOAM is an open-source CFD toolbox capable of solving even industrial scale processes. Hence, the availability of a link between OpenFOAM and POD-DEIM based MOR enables a direct order reduction for large scale systems originating in the industrial practice

    CFD study of gas flow through structured separation columns packings mellapak 250.x and mellapak 250.y

    No full text
    In order to increase the size of the gas-liquid interface area and consequently the intensity of the mass transfer, the separation columns are usually lled with a geometrically complex packing. The packing highly increases intricacy of the ow in the column and also makes almost all types of hydrodynamic measurements impossible. Hence a reliable model of the ow in the complex geometry of the separation column packing is sought by the industry. We provide a CFD model for the gas ow through two types of commercial structured packings, Mellapak 250.X and Mellapak 250.Y. We validate the model on experimental data and use it to study the gas mixing capabilities of the packings
    corecore