7 research outputs found

    Complete Closed Genome Sequence of Nontoxigenic Invasive Corynebacterium diphtheriae bv. mitis Strain ISS 3319

    Get PDF
    The genome sequence of the human pathogen Corynebacterium diphtheriae bv. mitis strain ISS 3319 was determined and closed in this study. The genome is estimated to have 2,404,936 bp encoding 2,257 proteins. This strain also possesses a plasmid of 1,960 bp

    MCE domain proteins::conserved inner membrane lipid-binding proteins required for outer membrane homeostasis

    Get PDF
    AbstractBacterial proteins with MCE domains were first described as being important for Mammalian Cell Entry. More recent evidence suggests they are components of lipid ABC transporters. In Escherichia coli, the single-domain protein MlaD is known to be part of an inner membrane transporter that is important for maintenance of outer membrane lipid asymmetry. Here we describe two multi MCE domain-containing proteins in Escherichia coli, PqiB and YebT, the latter of which is an orthologue of MAM-7 that was previously reported to be an outer membrane protein. We show that all three MCE domain-containing proteins localise to the inner membrane. Bioinformatic analyses revealed that MCE domains are widely distributed across bacterial phyla but multi MCE domain-containing proteins evolved in Proteobacteria from single-domain proteins. Mutants defective in mlaD, pqiAB and yebST were shown to have distinct but partially overlapping phenotypes, but the primary functions of PqiB and YebT differ from MlaD. Complementing our previous findings that all three proteins bind phospholipids, results presented here indicate that multi-domain proteins evolved in Proteobacteria for specific functions in maintaining cell envelope homeostasis.</jats:p

    Architectures of lipid transport systems for the bacterial outer membrane

    No full text
    How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E.\ua0coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein\ua0complex. In contrast, EM structures of two other E.\ua0coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles

    YraP Contributes to Cell Envelope Integrity and Virulence of Salmonella enterica Serovar Typhimurium

    No full text
    Mutations in sigma(E)-regulated lipoproteins have previously been shown to impact bacterial viability under conditions of stress and during in vivo infection. YraP is conserved across a number of Gram-negative pathogens, including Neisseria meningitidis, where the homolog is a component of the Bexsero meningococcal group B vaccine. Investigations using laboratory-adapted Escherichia coli K-12 have shown that yraP mutants have elevated sensitivity to a range of compounds, including detergents and normally ineffective antibiotics. In this study, we investigate the role of the outer membrane lipoprotein YraP in the pathogenesis of Salmonella enterica serovar Typhimurium. We show that mutations in S. Typhimurium yraP result in a defective outer membrane barrier with elevated sensitivity to a range of compounds. This defect is associated with attenuated virulence in an oral infection model and during the early stages of systemic infection. We show that this attenuation is not a result of defects in lipopolysaccharide and O-antigen synthesis, changes in outer membrane protein levels, or the ability to adhere to and invade eukaryotic cell lines in vitro

    Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth.

    Get PDF
    The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target

    Evidence for phospholipid export from the bacterial inner membrane by the Mla ABC transport system

    No full text
    The Mla pathway is believed to be involved in maintaining the asymmetrical Gram-negative outer membrane via retrograde phospholipid transport. The pathway is composed of three components: the outer membrane MlaA–OmpC/F complex, a soluble periplasmic protein, MlaC, and the inner membrane ATPase, MlaFEDB complex. Here, we solve the crystal structure of MlaC in its phospholipid-free closed apo conformation, revealing a pivoting β-sheet mechanism that functions to open and close the phospholipid-binding pocket. Using the apo form of MlaC, we provide evidence that the inner-membrane MlaFEDB machinery exports phospholipids to MlaC in the periplasm. Furthermore, we confirm that the phospholipid export process occurs through the MlaD component of the MlaFEDB complex and that this process is independent of ATP. Our data provide evidence of an apparatus for lipid export away from the inner membrane and suggest that the Mla pathway may have a role in anterograde phospholipid transport
    corecore