302 research outputs found

    Axial myofascial pain syndromes and botulinum toxin

    Get PDF

    Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress

    Get PDF
    Arsenic contamination has a negative impact on crop cultivation and on human health. As yet, no proteins have been identified in plants that mediate the extrusion of arsenic. Here, we heterologously expressed the yeast (Saccharomyces cerevisiae) arsenite efflux transporter ACR3 into Arabidopsis to evaluate how this affects plant tolerance and tissue arsenic contents. ACR3 was cloned from yeast and transformed into wild-type and nip7;1 Arabidopsis. Arsenic tolerance was determined at the cellular level using vitality stains in protoplasts, in intact seedlings grown on agar plates and in mature plants grown hydroponically. Arsenic efflux was measured from protoplasts and from intact plants, and arsenic levels were measured in roots and shoots of plants exposed to arsenate. At the cellular level, all transgenic lines showed increased tolerance to arsenite and arsenate and a greater capacity for arsenate efflux. With intact plants, three of four stably transformed lines showed improved growth, whereas only transgenic lines in the wild-type background showed increased efflux of arsenite into the external medium. The presence of ACR3 hardly affected tissue arsenic levels, but increased arsenic translocation to the shoot. Heterologous expression of yeast ACR3 endows plants with greater arsenic resistance, but does not lower significantly arsenic tissue levels

    Human CD34+/CD90+ ASCs Are Capable of Growing as Sphere Clusters, Producing High Levels of VEGF and Forming Capillaries

    Get PDF
    Background: Human adult adipose tissue is an abundant source of mesenchymal stem cells (MSCs). Moreover, it is an easily accessible site producing a considerable amount of stem cells. Methodology/Principal Findings: In this study, we have selected and characterized stem cells within the stromal vascular fraction (SVF) of human adult adipose tissue with the aim of understanding their differentiation capabilities and performance. We have found, within the SVF, different cell populations expressing MSC markers – including CD34, CD90, CD29, CD44, CD105, and CD117 – and endothelial-progenitor-cell markers – including CD34, CD90, CD44, and CD54. Interestingly, CD34+/CD90+ cells formed sphere clusters, when placed in non-adherent growth conditions. Moreover, they showed a high proliferative capability, a telomerase activity that was significantly higher than that found in differentiated cells, and contained a fraction of cells displaying the phenotype of a side population. When cultured in adipogenic medium, CD34+/CD90+ quickly differentiated into adipocytes. In addition, they differentiated into endothelial cells (CD31+/VEGF+/Flk- 1+) and, when placed in methylcellulose, were capable of forming capillary-like structures producing a high level of VEGF, as substantiated with ELISA tests. Conclusions/Significance: Our results demonstrate, for the first time, that CD34+/CD90+ cells of human adipose tissue are capable of forming sphere clusters, when grown in free-floating conditions, and differentiate in endothelial cells that form capillary-like structures in methylcellulose. These cells might be suitable for tissue reconstruction in regenerative medicine, especially when patients need treatments for vascular disease

    Induction of vasculogenesis in breast cancer models

    Get PDF
    Recently, there have been reports of postnatal vasculogenesis in cases of ischaemia models. The aim of the present study is to provide evidence of postnatal vasculogenesis in breast-cancer–bearing mice. Based on cell surface antigen expression, we isolated endothelial precursor cells from bone marrow, peripheral blood and tumour-infiltrating cells from mice that had received six human breast cancer xenografts. In all three areas (bone marrow, peripheral blood and tumour-infiltrating cells), endothelial precursor cell population was elevated in all transplanted mice. Differentiation and migration activities of endothelial precursor cells were measured by comparing levels of the endothelial precursor cell maturation markers Flk-1, Flt-1, Tie2, VE-cadherin and CD31 among these three areas. The endothelial precursor cell population was 14% or greater in the gated lymphocyte-size fraction of the inflammatory breast cancer xenograft named WIBC-9, which exhibits a hypervascular structure and de novo formation of vascular channels, namely vasculogenic mimicry (Shirakawa et al, 2001). In vitro, bone marrow-derived endothelial precursor cells from four human breast cancer xenografts proliferated and formed multiple clusters of spindle-shaped attaching cells on a vitronectin-coated dish. The attaching cells, which incorporated DiI-labelled acetylated low-density lipoprotein (DiI-acLDL) and were negative for Mac-1. The putative bone marrow derived endothelial precursor cell subset, which was double positive of CD34 and Flk-1, and comparative bone marrow derived CD34 positive with Flk-1 negative subset were cultured. The former subset incorporated DiI-acLDL and were integrated with HUVECs. Furthermore, they demonstrated significantly higher levels of murine vascular endothelial growth factor and interleukin-8 in culture supernatant on time course by enzyme-linked immunosorbent assay. These findings constitute direct evidence that breast cancer induces postnatal vasculogenesis in vivo

    Occurrence and Treatment of Bone Atrophic Non-Unions Investigated by an Integrative Approach

    Get PDF
    Recently developed atrophic non-union models are a good representation of the clinical situation in which many nonunions develop. Based on previous experimental studies with these atrophic non-union models, it was hypothesized that in order to obtain successful fracture healing, blood vessels, growth factors, and (proliferative) precursor cells all need to be present in the callus at the same time. This study uses a combined in vivo-in silico approach to investigate these different aspects (vasculature, growth factors, cell proliferation). The mathematical model, initially developed for the study of normal fracture healing, is able to capture essential aspects of the in vivo atrophic non-union model despite a number of deviations that are mainly due to simplifications in the in silico model. The mathematical model is subsequently used to test possible treatment strategies for atrophic non-unions (i.e. cell transplant at post-osteotomy, week 3). Preliminary in vivo experiments corroborate the numerical predictions. Finally, the mathematical model is applied to explain experimental observations and identify potentially crucial steps in the treatments and can thereby be used to optimize experimental and clinical studies in this area. This study demonstrates the potential of the combined in silico-in vivo approach and its clinical implications for the early treatment of patients with problematic fractures

    Hyperdominant left anterior descending artery continuing across left ventricular apex as posterior descending artery coexistent with aortic stenosis

    Get PDF
    We describe, in a 61 year old man, with coexistent aortic stenosis, the anomalous origin of posterior descending artery (PDA) from a stenotic left anterior descending (LAD) artery, as its continuation across the left ventricular apex, in the presence of a normally arising and atretic proximal right coronary artery. The patient underwent mechanical aortic valve replacement and triple coronary artery bypass grafting and made an uneventful recovery. To the best of our knowledge, origin of PDA as a continuation of LAD across the left ventricular apex in the presence of a normally arising but atretic proximal right coronary artery has never been described in literature before. There is one previous case report of continuation of LAD as PDA across the left ventricular apex in a patient with single left coronary coronary artery with an absent right coronary ostium. As the blood supply to the entire interventricular septum is derived from this "hyperdominant" LAD system, stenosis of LAD can be catastrophic. A review of literature of the anomalies of right coronary artery and, in particular, of its anomalous origin from LAD and its coexistence with aortic stenosis, is presented

    Combined Transfer of Human VEGF165 and HGF Genes Renders Potent Angiogenic Effect in Ischemic Skeletal Muscle

    Get PDF
    Increased interest in development of combined gene therapy emerges from results of recent clinical trials that indicate good safety yet unexpected low efficacy of “single-gene” administration. Multiple studies showed that vascular endothelial growth factor 165 aminoacid form (VEGF165) and hepatocyte growth factor (HGF) can be used for induction of angiogenesis in ischemic myocardium and skeletal muscle. Gene transfer system composed of a novel cytomegalovirus-based (CMV) plasmid vector and codon-optimized human VEGF165 and HGF genes combined with intramuscular low-voltage electroporation was developed and tested in vitro and in vivo. Studies in HEK293T cell culture, murine skeletal muscle explants and ELISA of tissue homogenates showed efficacy of constructed plasmids. Functional activity of angiogenic proteins secreted by HEK293T after transfection by induction of tube formation in human umbilical vein endothelial cell (HUVEC) culture. HUVEC cells were used for in vitro experiments to assay the putative signaling pathways to be responsible for combined administration effect one of which could be the ERK1/2 pathway. In vivo tests of VEGF165 and HGF genes co-transfer were conceived in mouse model of hind limb ischemia. Intramuscular administration of plasmid encoding either VEGF165 or HGF gene resulted in increased perfusion compared to empty vector administration. Mice injected with a mixture of two plasmids (VEGF165+HGF) showed significant increase in perfusion compared to single plasmid injection. These findings were supported by increased CD31+ capillary and SMA+ vessel density in animals that received combined VEGF165 and HGF gene therapy compared to single gene therapy. Results of the study suggest that co-transfer of VEGF and HGF genes renders a robust angiogenic effect in ischemic skeletal muscle and may present interest as a potential therapeutic combination for treatment of ischemic disorders
    corecore