30 research outputs found

    Correlation between Structure, Electrical, and Magnetic Properties of Some Alkali-Oxide Materials

    Get PDF
    In this chapter, the correlation between structure and electrical properties of Na2MP1.5As0.5O7 (MII = Co and Cu) are treated. The structural study shows that the cobalt and copper isotype materials can be crystallized in the tetragonal and monoclinic systems, respectively. The electrical study using impedance spectroscopy technique showed that these mixed diphosphate diarsenates are fast electrical conductors; however, the cobalt material exhibited more conductive property than the copper compound. In addition, the powder perovskite manganites La0.7M0.2M’0.1MnO3 (M = Sr, Ba and M’ = Na, Ag and K) have been prepared using the conventional solid-state reaction. The structural, magnetic, and magnetocaloric properties of these perovskite manganites compounds were studied extensively by means of X-ray powder diffraction (XRD) and magnetic measurements. These samples were crystallized in the distorted rhombohedral system with R3c space group. The variation of magnetization (M) vs. temperature (T) reveals that all compounds exhibit a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature (TC). A maximum magnetic entropy change, ΔSMMax, of 4.07 J kg−1 K−1 around 345 K was obtained in La0.7Sr0.2Na0.1MnO3 sample upon a magnetic field change of 5 T. The ΔSMMax values of La0.7Ba0.2M’0.1MnO3 are smaller in magnitude compared to La0.7Sr0.2M’0.1MnO3 samples and occur at lower temperatures

    Temperature Impact on Reverse Osmosis Permeate Flux in the Remediation of Hexavalent Chromium

    No full text
    Reverse osmosis technique was applied in removing hexavalent chromium ions from artificial wastewater. Different operating conditions were studied to monitor the separation process using commercial Reverse Osmosis BW30XFR membrane. Different concentrations of hexavalent chromium; 5, 30, and 100 ppm were tested. Samples were subjected to incrementally increasing operating pressure; 10, 30, and 45 bar and flow rates; 2.2, 3.4, and 4.5 L/min under various temperatures; 25, 35, 45, and 55 °C. Collected permeate and concentrations were measured after each experiment using a UV spectrophotometer. Results obtained presented a higher rejection percentage at lower feed concentrations with a value up to 99.8% for 5 ppm in comparison to 94.3% for 30 ppm and 77.2% for 100 ppm concentration due to concentration polarization; however, it showed no effect of increasing operating flow rates. Moreover, the increase in feed temperature from 25 to 55 °C had positively increased permeate flux to more than 300 times. The permeate flux at 25 °C is recorded for all tested samples in the range of 30 to 158 kg/h·m2, this range has risen at 55 °C under the same conditions to the range of 70 to 226 kg/h·m2, indicating alteration within the membrane pore size due to temperature increase and high applied pressure concluding high sensitivity of polymeric membranes towards changing permeate flow rate with increasing temperatures

    Temperature Impact on Reverse Osmosis Permeate Flux in the Remediation of Hexavalent Chromium

    No full text
    Reverse osmosis technique was applied in removing hexavalent chromium ions from artificial wastewater. Different operating conditions were studied to monitor the separation process using commercial Reverse Osmosis BW30XFR membrane. Different concentrations of hexavalent chromium; 5, 30, and 100 ppm were tested. Samples were subjected to incrementally increasing operating pressure; 10, 30, and 45 bar and flow rates; 2.2, 3.4, and 4.5 L/min under various temperatures; 25, 35, 45, and 55 °C. Collected permeate and concentrations were measured after each experiment using a UV spectrophotometer. Results obtained presented a higher rejection percentage at lower feed concentrations with a value up to 99.8% for 5 ppm in comparison to 94.3% for 30 ppm and 77.2% for 100 ppm concentration due to concentration polarization; however, it showed no effect of increasing operating flow rates. Moreover, the increase in feed temperature from 25 to 55 °C had positively increased permeate flux to more than 300 times. The permeate flux at 25 °C is recorded for all tested samples in the range of 30 to 158 kg/h·m2, this range has risen at 55 °C under the same conditions to the range of 70 to 226 kg/h·m2, indicating alteration within the membrane pore size due to temperature increase and high applied pressure concluding high sensitivity of polymeric membranes towards changing permeate flow rate with increasing temperatures

    Synthesis and Assessment of Two Malonyl Dihydrazide Derivatives as Corrosion Inhibitors for Carbon Steel in Acidic Media: Experimental and Theoretical Studies

    No full text
    Despite the extensive use of carbon steel in all industrial sectors, particularly in the petroleum industry, its low corrosion resistance is an ongoing problem for these industries. In the current work, two malonyl dihydrazide derivatives, namely 2,2’-malonylbis (N-phenylhydrazine-1-carbothiamide (MBC) and N’1, N’3-bis(-2-hydroxybenzylidene) malonohydrazide (HBM), were examined as inhibitors for the carbon steel corrosion in 1.0 M HCl. Both MBC and HBM were characterised using thin-layer chromatography, elemental analysis, infrared spectroscopy, and nuclear magnetic resonance techniques. The corrosion tests were performed using mass loss measurements, polarisation curves, and electrochemical impedance spectroscopy. It is obtained from the mass loss studies that the optimal concentration for both inhibitors is 2.0 × 10−5 mol/L, and the inhibition efficiencies reached up to 90.7% and 84.5% for MBC and HBM, respectively. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation (PDP) indicate an increased impedance in the presence of both MBC and HBM and mixed-type inhibitors, respectively. Both inhibitors can mitigate corrosion in the range of 298–328 K. Values of free energy changes obtained from the Langmuir model suggest that the inhibitors suppress the corrosion process principally by chemisorption. The computational investigations were conducted to identify the factors connected with the anti-corrosive properties of the examined inhibitors

    Efficient Removal of Ni(II) from Aqueous Solution by Date Seeds Powder Biosorbent: Adsorption Kinetics, Isotherm and Thermodynamics

    No full text
    Adsorption investigations in batch approaches were performed to explore the biosorption of Ni(II) ions from aqueous solutions on date seeds powder. The effects of pH, particle size, initial concentration of Ni(II) ions, adsorbent mass, temperature, and contact on the adsorption efficacy were studied. The maximum removal obtained was 90% for an original Ni(II) ion solution concentration of 50 ppm was attained at pH 7 after 30 min and with 0.30 g of an added adsorbent. The four adsorption models, namely Freundlich, Langmuir, Dubinin–Radushkevich (D–R), and Temkin were examined to fit the experimental findings. The adsorption system obeys the Freundlich model. The system was found to follow the pseudo-second order kinetic model. Thermodynamic factors; entropy (ΔS°), enthalpy (ΔH°), and Gibbs free energy (ΔG°) changes were also assessed. Results proved that adsorption of Ni(II) ions is exothermic and spontaneous. Sticking probability value was found to be less than unity, concluding that the process is dominated by physical adsorption

    Electrochemical and theoretical analysis of a novel spirocyclopropane derivative for corrosion inhibition of mild steel in acidic medium

    Get PDF
    The adsorption behavior and corrosion inhibition mechanism of 1-benzoyl-2-(4-methoxyphenyl)-6,6-dimethyl-5,7-dioxaspiro[2.5]octane-4,8-dione (Pt-5) on the Fe surface, in HCl medium, have been studied using both experimental and theoretical approaches. The effectiveness of corrosion inhibition has been evaluated by the use of electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and weight loss methods.It was found that Pt-5 has a maximum inhibition efficiency of 92.85% at a concentration of 5×10-3 M, and it is clear from data obtained using Pt-5 corrosion test results that the inhibition efficiency increases with increasing inhibitor concentration. The inhibitor's adsorption process follows the Langmuir isotherm while the thermodynamic parameters underwent discussion. This inhibitor can be adsorbed onto surfaces by physical and chemical means.The inhibitory efficiencies obtained from the experimental techniques agreed well with the calculated quantum chemical parameters based on DFT / B3LYB / 6-31G (d, p) and MD simulation results

    Exploring Adsorption Process of Lead (II) and Chromium (VI) Ions from Aqueous Solutions on Acid Activated Carbon Prepared from <i>Juniperus procera</i> Leaves

    No full text
    The adsorption potential of acid activated carbon prepared from leaves of Juniperus procera to remove Pb(II) and Cr(VI) toxic ions from aqueous solutions was investigated. The effects of solution pH, adsorbent mass, contact time, initial ion concentration and temperature on the biosorption process were studied, and the optimum conditions were determined. Moreover, Langmuir, Freundlich, Temkin and Dubinin&#8211;Radushkevich adsorption isotherm models were applied to analyze adsorption data. Thermodynamic parameters for the adsorption processes were calculated. Adsorption was found to be a spontaneous and endothermic process. In addition, kinetic studies revealed a pseudo-first order kinetics biosorption process. The obtained results suggest that acid activated Juniperus procera leaves powder can be used as a cheap, efficient and environmentally friendly adsorbent material with high removal efficiency up to 98% for Pb(II) and 96% for Cr(VI) at 0.80 and 1.00 g/100 mL, respectively. The duration of the process was 100 min and 120 min for Pb(II) and Cr(VI) ions, respectively. The morphology of the of prepared activated carbon was investigated by scanning electron microscope (SEM)

    Naproxen-Based Hydrazones as Effective Corrosion Inhibitors for Mild Steel in 1.0 M HCl

    No full text
    The corrosion-inhibiting performance of (E)-N&rsquo;-(4-bromobenzylidene)-2-(6-methoxynaphthalen-2-yl) propanehydrazide (BPH) and (E)-N&rsquo;-(4-(dimethylamino) benzylidene)-2-(6-methoxynaphthalen-2-yl) propanehydrazide (MPH) for mild steel (MS) in 1.0 M HCl was investigated using electrochemical methods, weight loss measurements, and scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscope (EDX) analysis. Raising the concentration of both inhibitors towards an optimal value of 5 &times; 10&minus;3 M reduced the corrosion current density (icorr) and the corrosion rate of mild steel. The inhibitory effect of MPH, which showed the highest inhibition efficiency, was explored under a range of temperatures between 303 and 333 K. The inhibitory performance of both compounds significantly improved when the inhibitor concentration increased. The main result that flowed from potentiodynamic polarization (PDP) tests was that both compounds acted as mixed-type inhibitors, with a predominance cathodic effect. The adsorption of both compounds follows the Langmuir isotherm. SEM/EDX confirmed the excellent inhibition performance of tested compounds

    Gum Arabic-Magnetite Nanocomposite as an Eco-Friendly Adsorbent for Removal of Lead(II) Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies

    No full text
    In this study, a gum Arabic-magnetite nanocomposite (GA/MNPs) was synthesized using the solution method. The prepared nanocomposite was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). The prepared composite was evaluated for the adsorption of lead(II) ions from aqueous solutions. The controlling factors such as pH, contact time, adsorbent dose, initial ion concentration, and temperature were investigated. The optimum adsorption conditions were found to be 0.3 g/50 mL, pH = 6.00, and contact time of 30 min. The experimental data well fitted the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity was determined as 50.5 mg/g. Thermodynamic parameters were calculated postulating an endothermic and spontaneous process and a physio-sorption pathway
    corecore