5,203 research outputs found

    Performance of treated and untreated asymmetric polysulfone hollow fiber membrane in series and cascade module configurations for CO2/CH4 gas separation system

    Get PDF
    This study investigates the effects of one-, two- and three-stage membrane system configurations in series arrangement for theCO2/CH4 separation for both untreated and treated membranes. Asymmetric polysulfone hollow fiber membranes were fabricated from 33 wt.% of polysulfone polymer using dry/wet phase inversion process. The produced membranes were characterized by pure gas permeation experiments, Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), density measurement and Thermogravimetric Analysis (TGA). For both untreated and treated membranes, the pressure-normalized flux of CO2 decreased with increasing of the membrane stages. In addition, the selectivities of asymmetric hollow fiber membrane showed a more constant trend with feed pressure. Treated membrane exhibited lower pressure-normalized flux than untreated membranes due to skin layer densification which increased the transport resistance, thus lead to the reduction in pressure-normalized fluxes. Among all the three configurations studied, two-stage membrane configuration showed the most constant trend in term of selectivity. However, three-stage cascade configuration produced the highest CO2/CH4 selectivity especially when tested at low feed pressure range. Effect of stage cut on feed pressure showed an increasing trend with increasing of CO2 and CH4 feed pressure for all configurations. This is due to the increase of the permeation driving force, which caused the passage of larger amounts of more permeable gas through the membrane. This study showed that, three-stage cascade configuration exhibited the smallest stage cut values thus produced higher purity of CO2 in permeate stream

    Use of integrated optical waveguide probes as an alternative to fiber probes for sensing of light backscattered from small volumes

    Get PDF
    We show that for light collection from thin samples, integrated probes can present a higher efficiency than conventional fiber probes, despite having a smaller collection area. Simulation results are validated by experiments

    Phase-Fitted and Amplification-Fitted Higher Order Two-Derivative Runge-Kutta Method for the Numerical Solution of Orbital and Related Periodical IVPs

    Get PDF
    A phase-fitted and amplification-fitted two-derivative Runge-Kutta (PFAFTDRK) method of high algebraic order for the numerical solution of first-order Initial Value Problems (IVPs) which possesses oscillatory solutions is derived. We present a sixth-order four-stage two-derivative Runge-Kutta (TDRK) method designed using the phase-fitted and amplification-fitted property. The stability of the new method is analyzed. The numerical experiments are carried out to show the efficiency of the derived methods in comparison with other existing Runge-Kutta (RK) methods

    Using durian rind as bridging material to overcome fluid loss and lost circulation problems in drilling operations

    Get PDF
    Lost circulation is one of the drilling operational problems. It refers to the total or partial loss of drilling fluid into highly permeable zones or natural or induced fractures. This problem is likely to occur when the hydrostatic head pressure of drilling fluid in the hole exceeds the formation pressure. Today, managing lost circulation remains a significant challenge to oilwell drilling operations because it may contribute to high non-productive time. It is imperative to note that the overbalance pressure situation also can cause the invasion of mud filtrate into production zones which will result in formation damage. To address these problems, an experimental investigation has been done on durian rind as an alternative fluid loss and lost circulation materials in water-based mud. Durian rind was selected as a mud loss control material because it contains close to 20% pectin which may complement the formation of high quality mat-like bridges across openings of the formation. The test involved the use of standard mud testing equipment and a lost circulation test cell. Durian rind powder was prepared by cleaning and cutting the durian rind into small pieces of 1 to 2 cm, and then dried them in an oven at 60°C for 48 hours before grinding into five different sizes from coarse to ultra-fine while Hydro-plug, the commercial lost circulation material was supplied by Scomi Energy. The fluid loss test was conducted using a standard low pressure filter press while the bridging test was carried out at 100 psi of pressure difference and ambient temperature using a lost circulation cell. Fine durian in the water-based mud gave the best fluid loss control compared to coarse durian rind, fine and coarse Hydro-plug. The experimental results also showed that at 15 lb/bbl (42.8 kg/m3) optimum concentration, coarse and intermediate durian rind have outperformed Hydro-plug by showing an excellent control of mud losses in 1 and 2 mm simulated fractures

    The influence of carbonization temperature on the development of carbon membrane with superior CO2/CH4 separation performance Pengaruh suhu karbonisasi kepada pembangunan membran karbon dengan kesan pemisahan gas CO2/CH4 yang cemerlang

    Get PDF
    In this study, P84-based carbon tubular membranes were fabricated and characterized in terms of their structural morphology and gas permeation properties, by using Scanning Electron Microscopy (SEM) and pure gas permeation system, respectively. The polymer tubular membranes were then carbonized under nitrogen atmosphere at different carbonization temperatures of 600, 700, 800 and 900 °C, with heating rate of 3°C/min and thermal soak time of 30 minutes. The manipulation of carbonization temperatures was required to see if it could enhance the permeation properties as desired. Pure gas permeation tests were performed using CO2 and CH4 gases. The CO2/CH4 selectivity was found increasing as the carbonization temperature was increased from 600 to 800 °C. The carbon membrane carbonized at 800°C showed the most promising result for CO2/CH4 selectivity, rendering 69.48 and CO2 permeance of 206.1 GPU

    Arrayed-waveguide-grating light collector for on-chip spectroscopy

    Get PDF
    We present a novel arrayed-waveguide-grating (AWG) device with improved external (biomedical) signal collection for use in on-chip spectroscopy. The collection efficiency of the device is compared to that of a standard AWG. We also present experimental results on the collection efficiency and size of the collection volume

    Heavy metal concentrations in a tropical eel Anguilla bicolor bicolor in Peninsular Malaysia, Malaysia

    Get PDF

    SINRD Filter Optimization using Heuristic Algorithm

    Get PDF
    In this paper, new SINRD designs are explored thanks to an original modelling method. A heuristic algorithm using this method is developed to reduce the number of holes in an SINRD filter. Simulations are processed with a modal modeling method called WCIP. Optimal results are successfully compared to measurements. The number of holes is reduced of 44% with comparable filter performances. Keywords: SINRD filter, heuristic algorithm
    corecore