5 research outputs found

    Establishment of background water quality conditions in the Great Zab River catchment:influence of geogenic and anthropogenic controls on developing a baseline for water assessment and resource management

    Get PDF
    The Great Zab River catchment is a major left-bank tributary of the River Tigris and drains a substantial part of the Kurdistan Region, an autonomous region of Northern Iraq. Within Kurdistan, the water resources of the Great Zab River catchment are under pressure from population increase and are utilized for potable, domestic and agricultural and industrial supply. As with many parts of the world, effective management of water resources within Kurdistan is hindered by a lack of water quality data and established background concentrations. This study therefore represents the first regional survey of river water chemistry for the Great Zab River catchment and presents data on the spatial and temporal trends in concentrations of As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sr, Zn, NO3?, SO42?, F?, Cl? and PO43?, in addition to pH, electrical conductivity, dissolved oxygen and turbidity. As a tool for underpinning the management and monitoring of water quality, background concentrations were defined for the Great Zab catchment using three methods. The influences of geogenic and anthropogenic controls upon spatial and temporal trends in water chemistry are also evaluated. The influence of geogenic loading from underlying bedrock was identifiable within the observed spatial trends, with the most notable differences found between waters sampled from the relatively more volcanic-rich Zagros zone to the north and those sampled from the lower catchment underlain by younger clay-, sand- and siltstones. The greatest anthropogenic influence, identifiable through elements such as Cl? and NO3?, is present in the more highly populated lower catchment. The background concentrations identified in the Great Zab catchment would be those expected as a result of geogenic loading with some anthropogenic influence and represent a more conservative value when compared to those such as the World Health Organization Maximum Admissible Concentration. However, background concentrations represent a powerful tool for identifying potential anthropogenic impacts on water quality and informing management of such occurrencespublishersversionPeer reviewe

    Adjusting wastewater treatment effluent standards to protect the receiving waters: the case of low flow rivers in central Spain

    Full text link
    [EN] Freshwater quality is deteriorating worldwide. In populated areas, urban pollution is the main pressure on surface continental waters, but intensive wastewater treatment is costly. Setting standards for treatment of wastewater before discharge is a major policy instrument for water authorities, balancing environmental gains and operational costs. Discharge permits usually define concentration limits at the discharge point of the plant effluent. This approach, however, may not guarantee the good status of the receiving waters. Discharge permits should be directly linked to pollutant concentration in the river. Our paper develops an approach to adaptively adjust discharge permits and applies it to Madrid and the Manzanares river, a city of more than 3 million inhabitants discharging its treated wastewater to a stream having less than 2 m(3) s(-1) average flow. Stricter limits to 5-day biological oxygen demand (11 mg O-2 L-1), ammonium (0.5 mg N-NH4 L-1), nitrate (5.9 mg N-NO3 L-1), and phosphate (0.17 mg P-PO4 L-1) at plant effluent are required to meet the river environmental objectives. The results can be generalized to assess wastewater management decisions in other geographical areas.The authors wish to thank the Tagus River Basin Authority (Confederacion Hidrografica del Tajo) for their availability and readiness to share information, and the anonymous reviewers for their valuable and constructive comments. This research was funded by the Botin Foundation, Spain.Bolinches, A.; De Stefano, L.; Paredes Arquiola, J. (2020). Adjusting wastewater treatment effluent standards to protect the receiving waters: the case of low flow rivers in central Spain. Environmental Earth Sciences. 79:1-17. https://doi.org/10.1007/s12665-020-09184-zS11779AEMET (2018) Standard climate Values: Madrid, Retiro. https://www.aemet.es/en/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?l=3195&k=mad. Accessed 25 June 2019Alexakis D, Kagalou I, Tsakiris G (2013) Assessment of pressures and impacts on surface water bodies of the Mediterranean. Case study: Pamvotis Lake, Greece. Environ Earth Sci 70:687–698. https://doi.org/10.1007/s12665-012-2152-7Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726. https://doi.org/10.1007/BF02804901Andreu J, Capilla J, Sanchís E (1996) AQUATOOL, a generalized decision-support system for water-resources planning and operational management. J Hydrol 177:269–291. https://doi.org/10.1016/0022-1694(95)02963-XArora S, Keshari AK (2018) Estimation of re-aeration coefficient using MLR for modelling water quality of rivers in urban environment. Groundw Sustain Dev. https://doi.org/10.1016/j.gsd.2017.11.006Asad Ismaiel I, Bird G, McDonald MA et al (2018) Establishment of background water quality conditions in the Great Zab River catchment: influence of geogenic and anthropogenic controls on developing a baseline for water quality assessment and resource management. Environ Earth Sci 77:50. https://doi.org/10.1007/s12665-017-7190-8Astaraie-Imani M, Kapelan Z, Fu G, Butler D (2012) Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK. J Environ Manag 112:1–9. https://doi.org/10.1016/j.jenvman.2012.06.039Bahamonde PA, Fuzzen ML, Bennett CJ et al (2015) Whole organism responses and intersex severity in rainbow darter (Etheostoma caeruleum) following exposures to municipal wastewater in the Grand River basin, ON, Canada. Part A Aquat Toxicol 159:290–301. https://doi.org/10.1016/J.AQUATOX.2014.11.023Bowie GL, Mills WB, Porcella DB et al (1985) Rates, constants, and kinetics formulations in surface water quality modeling. U.S. Environmental Protection Agency, AthensCarey RO, Migliaccio KW (2009) Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: a review. Environ Manag 44:205–217. https://doi.org/10.1007/s00267-009-9309-5Chang F-J, Tsai Y-H, Chen P-A et al (2015) Modeling water quality in an urban river using hydrological factors and data driven approaches. J Environ Manag. https://doi.org/10.1016/j.jenvman.2014.12.014Chapra SC (2008) Surface water-quality modeling. Waveland Press, Long GroveConfederación Hidrográfica del Tajo (2018) Resultados/informes: aguas superficiales—control fisicoquímico. https://www.chtajo.es/LaCuenca/CalidadAgua/Resultados_Informes/Paginas/RISupFisicoQuímico.aspx. Accessed 24 May 2018Corominas L, Acuña V, Ginebreda A, Poch M (2013) Integration of freshwater environmental policies and wastewater treatment plant management. Sci Total Environ 445–446:185–191. https://doi.org/10.1016/J.SCITOTENV.2012.12.055Council of the European Communities (1991) Council Directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC). OJCox BA, Whitehead PG (2009) Impacts of climate change scenarios on dissolved oxygen in the River Thames, UK. Hydrol Res 40:138–152. https://doi.org/10.2166/nh.2009.096Cubillo F, Rodriguez B, Barnwell TO (1992) A system for control of river water quality for the community of Madrid using QUAL2E. Water Sci Technol 26:1867–1873Dodds W, Smith V (2016) Nitrogen, phosphorus, and eutrophication in streams. Inl Waters 6:155–164. https://doi.org/10.5268/IW-6.2.909Dojlido J, Best GA (1993) Chemistry of water and water pollution. E. Horwood, ChichesterDonigian AS (2002) Watershed model calibration and validation: the HSPF experience. Proc Water Environ Fed 2002:44–73Duh JD, Shandas V, Chang H, George LA (2008) Rates of urbanisation and the resiliency of air and water quality. Sci Total Environ 400:238–256European Commission (2019) Report from the commission to the European Parliament and Council on the implementation of the Water Framework Directive (2000/60/EC) and the Floods Directive (2007/60/EC). BrusselsEuropean Parliament and Council (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJ 2014–7001Even S, Mouchel J-M, Servais P et al (2007) Modelling the impacts of combined sewer overflows on the river Seine water quality. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2006.12.007Fonseca A, Botelho C, Boaventura RAR, Vilar VJP (2014) Integrated hydrological and water quality model for river management: a case study on Lena River. Sci Total Environ 485–486:474–489. https://doi.org/10.1016/j.scitotenv.2014.03.111Gallego Bernad MS, Sánchez Pérez MÁ (2006) La destrucción ambiental del río Tajo: orígenes, procesos y consecuencias. In: V congreso Ibérico sobre Gestión y Planificación del Agua, FaroGenkai-Kato M, Carpenter SR (2005) Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature, and macrophytes. Ecology 86(1):210–219Google Earth (2018) Google Earth. https://earth.google.com/web/@40.4012607,-3.71553269,604.85487896a,8051.22382757d,35y,0h,0t,0r. Accessed 24 May 2018Griffiths JA, Ka F, Chan S et al (2017) Reach-scale variation surface water quality in a reticular canal system in the lower Yangtze River Delta region, China. J Environ Manag 196:80–90. https://doi.org/10.1016/j.jenvman.2017.02.079Hernández-Sancho F, Molinos-Senante M, Sala-Garrido R (2011) Cost modelling for wastewater treatment processes. Desalination 268:1–5. https://doi.org/10.1016/J.DESAL.2010.09.042Hutchins MG, Bowes MJ (2018) Balancing water demand needs with protection of river water quality by minimising stream residence time: an example from the Thames, UK. Water Resour Manag 32:2561–2568. https://doi.org/10.1007/s11269-018-1946-0IGN Instituto Geográfico Nacional (2018) Centro de Descargas del CNIG (IGN). https://centrodedescargas.cnig.es/CentroDescargas/index.jsp. Accessed 24 May 2018IGN Instituto Geográfico Nacional (2020) Atlas Nacional de España. https://atlasnacional.ign.es/. Accessed 19 May 2020INE (2018) Cifras oficiales de población resultantes de la revisión del Padrón municipal. https://www.ine.es/jaxiT3/Tabla.htm?t=2881&L=0. Accessed 7 Apr 2019INE Instituto Nacional de Estadística (2018) Survey on water supply and sewerage. https://www.ine.es/dynt3/inebase/index.htm?type=pcaxis&path=/t26/p069/p03/serie&file=pcaxis&L=1. Accessed 24 May 2018Jasinska EJ, Goss GG, Gillis PL et al (2015) Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge. Sci Total Environ 530–531:140–153. https://doi.org/10.1016/J.SCITOTENV.2015.05.080Jin L, Whitehead PG, Heppell CM et al (2016) Modelling flow and inorganic nitrogen dynamics on the Hampshire Avon: linking upstream processes to downstream water quality. Sci Total Environ 572:1496–1506. https://doi.org/10.1016/j.scitotenv.2016.02.156Kloas W, Urbatzka R, Opitz R et al (2009) Endocrine disruption in aquatic vertebrates. Ann N Y Acad Sci 1163:187–200. https://doi.org/10.1111/j.1749-6632.2009.04453.xKottek M, Grieser J, Beck C et al (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130Lastra A (2017) Minimizando el impacto de los vertidos en tiempo de lluvia. El caso de Madrid. In: V Jornadas de Ingeniería del Agua, p 2017Loos S, Middelkoop H, van der Perk M, van Beek R (2009) Large scale nutrient modelling using globally available datasets: a test for the Rhine basin. J Hydrol 369:403–415. https://doi.org/10.1016/j.jhydrol.2009.02.019Madrid City Council (2017) Padrón Municipal de Habitantes Ciudad de Madrid, pp 1–45Madrid City Council (2018) Zonas Alcantarillado Municipio Madrid. https://www.madrid.es/UnidadesDescentralizadas/Agua/DeInformacionsobreAgua/SistemasDepuracion/2017ZonasAlcantarilladoMunicipioMadrid.pdf.pdf. Accessed 24 May 2018Mapama M de AA y M ambiente (2011) Resolución de 30 de junio de 2011, de la Secretaría de Estado de Medio Rural y Agua, por la que se declaran las zonas sensibles en las cuencas intercomunitarias. Off Bull SpainMapama M de AA y M ambiente (2016) Real Decreto 1/2016, de 8 de enero, por el que se aprueba la revisión de los Planes Hidrológicos de las demarcaciones (...) y de la parte española de las demarcaciones hidrográficas del Cantábrico Oriental, Miño-Sil, Duero, Tajo, Guadiana y Ebro. Off Bull Spain 16, pp 2972–4301Mapama M de AA y M ambiente (2018) Redes de seguimiento. https://sig.mapama.gob.es/redes-seguimiento/. Accessed 26 June 2019McGrane SJ (2016) Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrol Sci J 61:2295–2311. https://doi.org/10.1080/02626667.2015.1128084Momblanch A, Paredes-Arquiola J, Munné A et al (2015) Managing water quality under drought conditions in the Llobregat River Basin. Sci Total Environ 503–504:300–318. https://doi.org/10.1016/j.scitotenv.2014.06.069Moriasi DN, Arnold JG, Van Liew MW et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. https://doi.org/10.13031/2013.23153Morris L, Colombo V, Hassell K et al (2017) Municipal wastewater effluent licensing: a global perspective and recommendations for best practice. Sci Total Environ 580:1327–1339. https://doi.org/10.1016/J.SCITOTENV.2016.12.096Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6Ostace GS, Baeza JA, Guerrero J et al (2013) Development and economic assessment of different WWTP control strategies for optimal simultaneous removal of carbon, nitrogen and phosphorus. Comput Chem Eng 53:164–177. https://doi.org/10.1016/J.COMPCHEMENG.2013.03.007Paredes J, Andreu J, Solera A (2010) A decision support system for water quality issues in the Manzanares River (Madrid, Spain). Sci Total Environ 408:2576–2589. https://doi.org/10.1016/j.scitotenv.2010.02.037Paredes-Arquiola S (2013) Modelo gescal para la simulación de la calidad del agua en sistemas de recursos hídricosParedes-Arquiola J, Andreu-Álvarez J, Martín-Monerris M, Solera A (2010) Water quantity and quality models applied to the Jucar River Basin, Spain. Water Resour Manag 24:2759–2779. https://doi.org/10.1007/s11269-010-9578-zParedes-Arquiola J, Solera A, Martinez-Capel F et al (2014) Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrol Sci J 59:878–889. https://doi.org/10.1080/02626667.2013.821573Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040Santhi C, Arnold JG, Williams JR et al (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37:1169–1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.xSferratore A, Billen G, Garnier J, Théry S (2005) Modeling nutrient (N, P, Si) budget in the Seine watershed: application of the Riverstrahler model using data from local to global scale resolution. Glob Biogeochem Cycles 19:1–14. https://doi.org/10.1029/2005GB002496Singh J, Knapp HV, Arnold JG, Demissie M (2005) Hydrological modeling of the Iroquois river watershed using HSPF and SWAT. J Am Water Resour Assoc 41:343–360. https://doi.org/10.1111/j.1752-1688.2005.tb03740.xSmith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196. https://doi.org/10.1016/S0269-7491(99)00091-3Soares Cruz MA, de Azevedo GA, de Aragão R et al (2019) Spatial and seasonal variability of the water quality characteristics of a river in Northeast Brazil. Environ Earth Sci 78:68. https://doi.org/10.1007/s12665-019-8087-5Soil Conservation Service (1972) SCS national engineering handbook, section 4: hydrologyThomann RV, Mueller JA (1987) Principles of surface water quality modeling and control. HarperCollins, New YorkUnited Nations Environment Program (2015) Good practices for regulating wastewater treatment. Legislations, Policies and Standard
    corecore