5 research outputs found

    Dicke Coherent Narrowing in Two-Photon and Raman Spectroscopy of Thin Vapour Cells

    Full text link
    The principle of coherent Dicke narrowing in a thin vapour cell, in which sub-Doppler spectral lineshapes are observed under a normal irradiation for a l/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the two wave vectors must be normal to the cell, making the two-photon scheme highly versatile. A comparison is provided between the Dicke narrowing with copropagating fields, and the residual Doppler-broadening occurring with counterpropagating geometries. The experimental feasibility is discussed on the basis of a first observation of a two-photon resonance in a 300 nm-thick Cs cell. Extension to the Raman situation is finally considered

    Laser spectroscopy with nanometric gas cells : distance dependence of atom-surface interaction and collisions under confinement

    Full text link
    The high sensitivity of Laser Spectroscopy has made possible the exploration of atomic resonances in newly designed "nanometric" gas cells, whose local thickness varies from 20nm to more than 1000 nm. Following the initial observation of the optical analogous of the coherent Dicke microwave narrowing, the newest prospects include the exploration of long-range atom surface van der Waals interaction with spatial resolution in an unprecedented range of distances, modification of atom dielectric resonant coupling under the influence of the coupling between the two neighbouring dielectric media, and even the possible modification of interatomic collisions processes under the effect of confinement

    Testing the distance-dependence of the van der Waals interaction between an atom and a surface through spectroscopy in a vapor nanocell

    Get PDF
    This paper presents our current measurements in a vapor nanocell aiming at a test of the distance-dependence of the atom-surface interaction, when simple asymptotic descriptions may turn to be not valid. A state-of-the-art of atom-surface interaction measurements is provided as an introduction, along with the comparison with the theory of the van der Waals (or Casimir-Polder) interaction; it is followed by a presentation of the most salient features of nanocell spectroscop
    corecore