11 research outputs found
Control of the thickness of mesoporous titania films for application in multiphase catalytic microreactors
A new method of solâgel polymer template synthesis of mesoporous catalytic thin films has been proposed which allows controlling the chemical nature of the film, the porosity, thickness and loading with an active species. The mesoporous films with a long-order structure can be obtained in a narrow range of surfactant-to-metal precursor molar ratios from 0.006 to 0.009. The catalytic film thickness was varied from 300 to 1000 nm while providing a uniform catalyst distribution with a desired catalyst loading (1 wt. % Au nanoparticles) throughout the film. The films were characterized by TEM, SEM, ethanol adsorption and contact angle measurements. The calcination of the as-synthesized films at 573 K reduced Ti4+ sites to Ti3+. A 300 nm thick Au-containing film showed an initial TOF of 1.4 s-1 and a selectivity towards unsaturated alcohols as high as 90% in the hydrogenation of citral. Thicker films demonstrated a high selectivity towards the saturated aldehyde (above 55%) and a lower intrinsic catalytic activity (initial TOF of 0.7â0.9 s-1) in the absence of internal diffusion limitations
One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbonâcarbon nanotube hybrids
Novel nitrogen-doped carbon hybrid materials consisting of multiwalled nanotubes and porous graphitic layers have been produced by chemical vapor deposition over magnesium-oxide-supported metal catalysts. CNx nanotubes were grown on Co/Mo, Ni/Mo, or Fe/Mo alloy nanoparticles, and MgO grains served as a template for the porous carbon. The simultaneous formation of morphologically different carbon structures was due to the slow activation of catalysts for the nanotube growth in a carbon-containing gas environment. An analysis of the obtained products by means of transmission electron microscopy, thermogravimetry and X-ray photoelectron spectroscopy methods revealed that the catalyst's composition influences the nanotube/porous carbon ratio and concentration of incorporated nitrogen. The hybrid materials were tested as electrodes in a 1M H2SO4 electrolyte and the best performance was found for a nitrogen-enriched material produced using the Fe/Mo catalyst. From the electrochemical impedance spectroscopy data, it was concluded that the nitrogen doping reduces the resistance at the carbon surface/electrolyte interface and the nanotubes permeating the porous carbon provide fast charge transport in the cell
Non-agglomerated siliconâorganic nanoparticles and their nanocomplexes with oligonucleotides: synthesis and properties
The development of efficient and convenient systems for the delivery of nucleic-acid-based drugs into cells is an urgent task. Đ promising approach is the use of various nanoparticles. Silica nanoparticles can be used as vehicles to deliver nucleic acid fragments into cells. In this work, we developed a method for the synthesis of siliconâorganic (SiâNH2) non-agglomerated nanoparticles by the hydrolysis of aminopropyltriethoxysilane (APTES). The resulting product forms a clear solution containing nanoparticles in the form of low molecular weight polymer chains with [âSi(OH)(C3H6NH2)Oâ] monomer units. Oligonucleotides (ODN) were conjugated to the prepared SiâNH2 nanoparticles using the electrostatic interaction between positively charged amino groups of nanoparticles and negatively charged internucleotide phosphate groups in oligonucleotides. The SiâNH2 nanoparticles and SiâNH2·ODN nanocomplexes were characterized by transmission electron microscopy, atomic force microscopy and IR and electron spectroscopy. The size and zeta potential values of the prepared nanoparticles and nanocomplexes were evaluated. Oligonucleotides in SiâNH2·ODN complexes retain their ability to form complementary duplexes. The SiâNH2Flu nanoparticles and SiâNH2·ODNFlu nanocomplexes were shown by fluorescence microscopy to penetrate into human cells. The SiâNH2Flu nanoparticles predominantly accumulated in the cytoplasm whereas ODNFlu complexes were predominantly detected in the cellular nuclei. The SiâNH2·ODN nanocomplexes demonstrated a high antisense activity against the influenza A virus in a cell culture at a concentration that was lower than their 50% toxic concentration by three orders of magnitude
Biomaterials Based on Carbon Nanotube Nanocomposites of Poly(styrene-b-isobutylene-b-styrene): The Effect of Nanotube Content on the Mechanical Properties, Biocompatibility and Hemocompatibility
Nanocomposites based on poly(styrene-block-isobutylene-block-styrene) (SIBS) and single-walled carbon nanotubes (CNTs) were prepared and characterized in terms of tensile strength as well as bio- and hemocompatibility. It was shown that modification of CNTs using dodecylamine (DDA), featured by a long non-polar alkane chain, provided much better dispersion of nanotubes in SIBS as compared to unmodified CNTs. As a result of such modification, the tensile strength of the nanocomposite based on SIBS with low molecular weight (Mn = 40,000 g mol–1) containing 4% of functionalized CNTs was increased up to 5.51 ± 0.50 MPa in comparison with composites with unmodified CNTs (3.81 ± 0.11 MPa). However, the addition of CNTs had no significant effect on SIBS with high molecular weight (Mn~70,000 g mol−1) with ultimate tensile stress of pure polymer of 11.62 MPa and 14.45 MPa in case of its modification with 1 wt% of CNT-DDA. Enhanced biocompatibility of nanocomposites as compared to neat SIBS has been demonstrated in experiment with EA.hy 926 cells. However, the platelet aggregation observed at high CNT concentrations can cause thrombosis. Therefore, SIBS with higher molecular weight (Mn~70,000 g mol−1) reinforced by 1–2 wt% of CNTs is the most promising material for the development of cardiovascular implants such as heart valve prostheses