104 research outputs found
Catalytic Alkylation of Brown Coal and Peat
The alcohol alkylation of low-grade metamorphic coal and peat in the presence of mineral and organic acids was studied using FTIR, NMR, and GC-MS. The impact of the reaction conditions on the yield of extractable matter was investigated experimentally, and relevant regression equations were obtained. Changes in the group and individual compositions of the wax fractions of bitumen in the process of brown coal and peat alkylation were studied. It was found that the esters of alkylated coal waxes consisted of native esters of fatty acids, and alkyl esters of these acids formed as a result of the alkylation reaction. Esterification and transesterification were predominant in the reactions of the bitumen fraction components. The positive effect of alcohol alkylation on the increase of the bitumen yield was found
CYTOKINE STATUS IN PATIENTS WITH URTICARIA
Research objective. The present research evaluates some indicators of cytokine status in patients with urticaria for evaluation of the clinical course. Material and methods. 93 patients with urticaria at the age from 14 to 88 years were examined. The severity of the clinical course was assessed according to the Urticaria activity score-7. The determination of total IgE and IL-4, IL-6 and IL-10 was performed by ELISA. The digital material is processed by the method of variational statistics. Results. In patients with urticaria in cytokine status, there is an increase in anti-(IL-4, IL-6) and proinflammatory (IL-10) cytokines against a background of hyperproduction of total IgE. Conclusion: In patients with chronic urticaria there is a predominance of IL-6 production against the background of hyperproduction of total IgE and IL-10, causing a pronounced secondary immunological failure and decompensatory form
Control of Ni/Ce1-xMxOy catalyst properties via the selection of dopant M = Gd, La, Mg Part 1. Physicochemical characteristics
To elucidate the role of support composition in autothermal reforming of ethanol (ATR of C2H5OH), a series of Ni catalysts (Ni content 2–15 wt.%) supported on different ceria-based oxides (Ce1-xGdxOy, Ce1-xLaxOy and Ce1-xMgxOy; x = 0.1–0.9) were prepared. The synthetized materials were tested in ATR of ethanol at 200–700 °C. It was established that supports themselves show catalytic activity in ATR of C2H5OH and provide 10–15% yield of H2 at 700 °C. Upon the increase of Ni content from 2 to 15 wt.% the temperature of 100% ethanol conversion decreases from 700 tо 300 °С, hydrogen yield increases from 25 to 60%, the inhibition of С2-С3 by-products formation, as well as the promotion of decomposition of acetaldehyde occur. The enhancement of catalyst performance in ATR of C2H5OH has been observed in the next series of supports: Ce1-xMgxOy < Ce1-xGdxOy < Ce1-xLaxOy and with a decrease of x to an optimal value that correlates with the improvement of Ni active component reducibility. At 600 °C on 10Ni/Ce0.8La0.2O1.9 catalyst the H2 yield of 50% was achieved at C2H5OH conversion of 100%. Stable and high performance of developed catalysts in ATR of C2H5OH indicates the promise of their use in the production of hydrogen
Control of Ni/Ce1-xMxOy Catalyst Properties Via the Selection of Dopant M = Gd, La, Mg. Part 2. Catalytic Activity
To elucidate the role of support composition in autothermal reforming of ethanol (ATR of C2H5OH), a series of Ni catalysts (Ni content 2–15 wt.%) supported on different ceria-based oxides (Ce1-xGdxOy, Ce1-xLaxOy and Ce1-xMgxOy; x = 0.1–0.9) were prepared. The synthetized materials were tested in ATR of ethanol at 200–700 °C. It was established that supports themselves show catalytic activity in ATR of C2H5OH and provide 10–15% yield of H2 at 700 °C. Upon the increase of Ni content from 2 to 15 wt.% the temperature of 100% ethanol conversion decreases from 700 tо 300 °С, hydrogen yield increases from 25 to 60%, the inhibition of С2-С3 by-products formation, as well as the promotion of decomposition of acetaldehyde occur. The enhancement of catalyst performance in ATR of C2H5OH has been observed in the next series of supports: Ce1-xMgxOy < Ce1-xGdxOy < Ce1-xLaxOy and with a decrease of x to an optimal value that correlates with the improvement of Ni active component reducibility. At 600 °C on 10Ni/Ce0.8La0.2O1.9 catalyst the H2 yield of 50% was achieved at C2H5OH conversion of 100%. Stable and high performance of developed catalysts in ATR of C2H5OH indicates the promise of their use in the production of hydrogen
Structural Changes of Mo/ZSM-5 Catalysts During the Methane Dehydroaromatization
The structure changes of Mo/ZSM-5 catalysts with different Mo content (2 and 10 wt. % Mo) and Si/Al atomic ratio (17, 30 and 45) during the methane dehydroaromatization have been investigated by X-ray powder diffractometry, N2 adsorption and transmission electron microscopy. The treatment of Mo/ZSM-5 catalysts in reducing atmosphere (CH4 or H2) at about 700 oC promotes development of mesoporous system. The pores are open to the exterior of the zeolite grain and have an entrance diameter of ~ 4-10 nm. It is proposed that mesopore formation in Mo/ZSM-5 catalyst is connected with the dealumination of zeolite. The mesopore formation in the parent H-ZSM-5 zeolite by NaOH treatment does not improve the activity of /ZSM-5 catalyst
Mesoporous Carbon-Based Rhodium Catalysts for Benzene Hydrogenation
Two different carbons, namely CAS-P-500 and CRH-P-500, were prepared from apricot stones and rice husk by H3PO4-activation at 500 ºC and H3PO4/precursor (wt/wt) impregnation ratio of 2:1 followed by water washing and desilication by NaOH solution respectively. Elemental analyses of both samples using X-ray fluorescence spectroscopy and VARIO ELEMENTAR III elemental analyzer detected up to 1% of remained phosphorus and about 88% of carbon. SEM characterization and nitrogen adsorption data revealed that highly mesoporous materials were obtained. According to BJH scheme calculations, N2 BET-surface area and pore volume for CAS-P-500 reached the values of 2030 m2/g and 1.64 cm3/g, while for CRH-P-500: 1690 m2/g and 1.95 cm3/g respectively. Activated carbons CAS-P-500 and CRH-P-500 were used as catalyst supports for the conversion of small amounts of benzene into cyclohexane to obtain cleaner gasoline. According to Euro-3 standards, gasoline should contain less than 1% of benzene, since the incomplete combustion of gasoline, which contains benzene, leads to formation of benzopyrene- a powerful carcinogen in exhaust gases. The activity of rhodium catalysts based on the CAS-P-500 and CRH-P-500 allow complete conversion of benzene into cyclohexane at 40 atm and 80oC temperature and is comparable to those of based on conventional carbons: “Sibunit”, etc
Deactivation and Regeneration of Mo/ZSM-5 Catalysts for Methane Dehydroaromatization
The methane dehydroaromatization (DHA) was studied over a series of impregnated Mo/ZSM-5 catalysts with different molybdenum contents (1-10 wt.%). It was shown that total methane conversion was decreased by 30% during 12 h of DHA reaction. The benzene formation rate was increased from 0.5 to 13.9 mol C6H6/(gMo·s) when the molybdenum content in the catalyst was lowered from 10 to 1 wt.%. The deactivated Mo/ZSM-5 catalysts were studied by a group of methods: N2 adsorption, XRD, TGDTA, HRTEM and XPS. The content and condensation degree (C/H ratio) of the carbonaceous deposits was found to increase with an increase of either of the following parameters: molybdenum content (1-10 wt.%), reaction temperature (720-780 °C), space velocity (405-1620 h-1), reaction time (0.5-20 h). The stability of Mo/ZSM-5 catalysts in reaction-regeneration cycles was better when the time on stream was shorter. The regeneration conditions of deactivated Mo/ZSM-5 catalysts providing their stable operation under multiple reaction-regeneration cycles have been selected
Carbonization and Regeneration of Mo/ZSM-5 Catalysts for Methane Dehydroaromatization
The character of carbonaceous deposits formed during methane dehydroaromatization reaction in the presence of Mo/ZSM-5 catalysts was studied by differential thermal analysis. The dependence of the concentration and condensation degree (C/H ratio) of the carbonaceous deposits on the catalyst synthesis conditions (Mo content = 1-10%, Si/Al ratio in the initial H-ZSM-5 = 17-45) and reaction conditions (feed flow
rate = 405-1620 h-1, methane concentration = 90-98%, reaction temperature = 720-780 °C) was investigated.
The oxidative treatment conditions of carbonized Mo/ZSM-5 catalysts providing stable operation of the
catalysts under multiple reaction-oxidative treatment cycles were selected
Copper Sorption by Coal Substances from Aqueous Solutions
The copper cations sorption by brown coal, humic acids and residual coal samples after the extraction of humic acid was studied by using the methods of spectroscopy FT-IR, EPR, Solid State CP/MAS 13C-NMR. Samples of lignite (brown coal) of the Tisulsky deposit (TL) of Kansk-Achinsk brown coal basin (Russia), its naturaloxidized form (NOLF), as well as samples of the humic acids (HA) extracted from them, and the residual coal after the extraction of humic acids (RC) were used as sorbents. The copper cations sorption process by the investigated samples depends on contribution of several mechanisms in varying degrees. It may be an ion exchange; complexation with the functional groups of the electron donor; complexation to form the bond Mez+ – HA due to the presence of the free π-electrons on the surface. The quantity of adsorbed copper cations depends on the functional and structural composition of the investigated samples. The copper cations sorption by the coals, humic acids and residual coals reduces the number of paramagnetic centers in the samples and the intensity of the NMR spectra. The copper cations sorption by HA from TL is determined by the significant contribution of the ion exchange process. HA from NOLF; initial TL and NOLF; RC TL and RC NOLF sorb copper cations mainly due to the formation of complexes with individual functional groups and the negatively charged surface portions. The data of 13C-NMR and EPR studies have shown that the aromatic structures make the main contribution to the complexation
Highly Dispersed Palladium on Carbon Nanofibers for Hydrogenation of Nitrocompounds to Amines
The effect of palladium dispersion and nature of the support on catalytic performance in hydrogenation of nitrobenzene to aniline was studied. It was shown that the type of the support and modification of palladium with phosphorus make it possible to stabilize highly dispersed (1.5-2 nm) palladium particles in the metallic state, thus increasing the efficiency of new catalysts
- …