15 research outputs found

    Elevated troponin and myocardial infarction in the intensive care unit: a prospective study

    Get PDF
    INTRODUCTION: Elevated troponin levels indicate myocardial injury but may occur in critically ill patients without evidence of myocardial ischemia. An elevated troponin alone cannot establish a diagnosis of myocardial infarction (MI), yet the optimal methods for diagnosing MI in the intensive care unit (ICU) are not established. The study objective was to estimate the frequency of MI using troponin T measurements, 12-lead electrocardiograms (ECGs) and echocardiography, and to examine the association of elevated troponin and MI with ICU and hospital mortality and length of stay. METHOD: In this 2-month single centre prospective cohort study, all consecutive patients admitted to our medical-surgical ICU were classified in duplicate by two investigators as having MI or no MI based on troponin, ECGs and echocardiograms obtained during the ICU stay. The diagnosis of MI was based on an adaptation of the joint European Society of Cardiology/American College of Cardiology definition: a typical rise or fall of an elevated troponin measurement, in addition to ischemic symptoms, ischemic ECG changes, a coronary artery intervention, or a new cardiac wall motion abnormality. RESULTS: We screened 117 ICU admissions and enrolled 115 predominantly medical patients. Of these, 93 (80.9%) had at least one ECG and one troponin; 44 of these 93 (47.3%) had at least one elevated troponin and 24 (25.8%) had an MI. Patients with MI had significantly higher mortality in the ICU (37.5% versus 17.6%; P = 0.050) and hospital (50.0% versus 22.0%; P = 0.010) than those without MI. After adjusting for Acute Physiology and Chronic Health Evaluation II score and need for inotropes or vasopressors, MI was an independent predictor of hospital mortality (odds ratio 3.22, 95% confidence interval 1.04–9.96). The presence of an elevated troponin (among those patients in whom troponin was measured) was not independently predictive of ICU or hospital mortality. CONCLUSION: In this study, 47% of critically ill patients had an elevated troponin but only 26% of these met criteria for MI. An elevated troponin without ischemic ECG changes was not associated with adverse outcomes; however, MI in the ICU setting was an independent predictor of hospital mortality

    Antibody Response and Disease Severity in Healthcare Worker MERS Survivors

    No full text
    We studied antibody response in 9 healthcare workers in Jeddah, Saudi Arabia, who survived Middle East respiratory syndrome, by using serial ELISA and indirect immunofluorescence assay testing. Among patients who had experienced severe pneumonia, antibody was detected for >18 months after infection. Antibody longevity was more variable in patients who had experienced milder disease

    Antibody Response and Disease Severity in Healthcare Worker MERS Survivors

    No full text
    We studied antibody response in 9 healthcare workers in Jeddah, Saudi Arabia, who survived Middle East respiratory syndrome, by using serial ELISA and indirect immunofluorescence assay testing. Among patients who had experienced severe pneumonia, antibody was detected for >18 months after infection. Antibody longevity was more variable in patients who had experienced milder disease

    Introducing the Comprehensive Unit-based Safety Program for mechanically ventilated patients in Saudi Arabian Intensive Care Units

    No full text
    Over the past decade, there have been major improvements to the care of mechanically ventilated patients (MVPs). Earlier initiatives used the concept of ventilator care bundles (sets of interventions), with a primary focus on reducing ventilator-associated pneumonia. However, recent evidence has led to a more comprehensive approach: The ABCDE bundle (Awakening and Breathing trial Coordination, Delirium management and Early mobilization). The approach of the Comprehensive Unit-based Safety Program (CUSP) was developed by patient safety researchers at the Johns Hopkins Hospital and is supported by the Agency for Healthcare Research and Quality to improve local safety cultures and to learn from defects by utilizing a validated structured framework. In August 2015, 17 Intensive Care Units (ICUs) (a total of 271 beds) in eight hospitals in the Kingdom of Saudi Arabia joined the CUSP for MVPs (CUSP 4 MVP) that was conducted in 235 ICUs in 169 US hospitals and led by the Johns Hopkins Armstrong Institute for Patient Safety and Quality. The CUSP 4 MVP project will set the stage for cooperation between multiple hospitals and thus strives to create a countrywide plan for the management of all MVPs in Saudi Arabia

    Low-molecular-weight heparin venous thromboprophylaxis in critically ill patients with renal dysfunction: A subgroup analysis of the PROTECT trial

    No full text
    <div><p>Introduction</p><p>There is concern about excessive bleeding when low-molecular-weight heparins (LMWHs) are used for venous thromboembolism (VTE) prophylaxis in renal dysfunction. Our objective was to evaluate whether LMWH VTE prophylaxis was safe and effective in critically ill patients with renal dysfunction by conducting a subgroup analysis of PROTECT, a randomized blinded trial.</p><p>Methods</p><p>We studied intensive care unit (ICU) patients with pre-ICU dialysis-dependent end-stage renal disease (ESRD; pre-specified subgroup; n = 118), or severe renal dysfunction at ICU admission (defined as ESRD or non-dialysis dependent with creatinine clearance [CrCl] <30 ml/min; <i>post hoc</i> subgroup; n = 590). We compared dalteparin, 5000 IU daily, with unfractionated heparin (UFH), 5000 IU twice daily, and considered outcomes of proximal leg deep vein thrombosis (DVT); pulmonary embolism (PE); any VTE; and major bleeding. Adjusted hazard ratios [HR] were calculated using Cox regression.</p><p>Results</p><p>In patients with ESRD, there was no significant difference in DVT (8.3% vs. 5.2%, p = 0.76), any VTE (10.0% vs. 6.9%; p = 0.39) or major bleeding (5.0% vs. 8.6%; p = 0.32) between UFH and dalteparin. In patients with severe renal dysfunction, there was no significant difference in any VTE (10.0% vs. 6.4%; p = 0.07) or major bleeding (8.9% vs. 11.0%; p = 0.66) but an increase in DVT with dalteparin (7.6% vs. 3.7%; p = 0.04). Interaction p-values for comparisons of HRs (ESRD versus not) were non-significant.</p><p>Conclusions</p><p>In critically ill patients with ESRD, or severe renal dysfunction, there was no significant difference in any VTE or major bleeding between UFH and dalteparin. Patients with severe renal dysfunction who received dalteparin had more proximal DVTs than those on UFH; this finding did not hold in patients with ESRD alone.</p></div

    Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial

    No full text
    Abstract Background It had been more than 5 years since the first case of Middle East Respiratory Syndrome coronavirus infection (MERS-CoV) was recorded, but no specific treatment has been investigated in randomized clinical trials. Results from in vitro and animal studies suggest that a combination of lopinavir/ritonavir and interferon-β1b (IFN-β1b) may be effective against MERS-CoV. The aim of this study is to investigate the efficacy of treatment with a combination of lopinavir/ritonavir and recombinant IFN-β1b provided with standard supportive care, compared to treatment with placebo provided with standard supportive care in patients with laboratory-confirmed MERS requiring hospital admission. Methods The protocol is prepared in accordance with the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) guidelines. Hospitalized adult patients with laboratory-confirmed MERS will be enrolled in this recursive, two-stage, group sequential, multicenter, placebo-controlled, double-blind randomized controlled trial. The trial is initially designed to include 2 two-stage components. The first two-stage component is designed to adjust sample size and determine futility stopping, but not efficacy stopping. The second two-stage component is designed to determine efficacy stopping and possibly readjustment of sample size. The primary outcome is 90-day mortality. Discussion This will be the first randomized controlled trial of a potential treatment for MERS. The study is sponsored by King Abdullah International Medical Research Center, Riyadh, Saudi Arabia. Enrollment for this study began in November 2016, and has enrolled thirteen patients as of Jan 24-2018. Trial registration ClinicalTrials.gov, ID: NCT02845843. Registered on 27 July 2016

    Critically ill healthcare workers with the middle east respiratory syndrome (MERS): A multicenter study.

    No full text
    BACKGROUND:Middle East Respiratory Syndrome Coronavirus (MERS-CoV) leads to healthcare-associated transmission to patients and healthcare workers with potentially fatal outcomes. AIM:We aimed to describe the clinical course and functional outcomes of critically ill healthcare workers (HCWs) with MERS. METHODS:Data on HCWs was extracted from a multi-center retrospective cohort study on 330 critically ill patients with MERS admitted between (9/2012-9/2015). Baseline demographics, interventions and outcomes were recorded and compared between survivors and non-survivors. Survivors were approached with questionnaires to elucidate their functional outcomes using Karnofsky Performance Status Scale. FINDINGS:Thirty-Two HCWs met the inclusion criteria. Comorbidities were recorded in 34% (11/32) HCW. Death resulted in 8/32 (25%) HCWs including all 5 HCWs with chronic renal impairment at baseline. Non-surviving HCW had lower PaO2/FiO2 ratios 63.5 (57, 116.2) vs 148 (84, 194.3), p = 0.043, and received more ECMO therapy compared to survivors, 9/32 (28%) vs 4/24 (16.7%) respectively (p = 0.02).Thirteen of the surviving (13/24) HCWs responded to the questionnaire. Two HCWs confirmed functional limitations. Median number of days from hospital discharge until the questionnaires were filled was 580 (95% CI 568, 723.5) days. CONCLUSION:Approximately 10% of critically ill patients with MERS were HCWs. Hospital mortality rate was substantial (25%). Patients with chronic renal impairment represented a particularly high-risk group that should receive extra caution during suspected or confirmed MERS cases clinical care assignment and during outbreaks. Long-term repercussions of critical illness due to MERS on HCWs in particular, and patients in general, remain unknown and should be investigated in larger studies

    Economic evaluation of the prophylaxis for thromboembolism in critical care trial (E-PROTECT): study protocol for a randomized controlled trial

    Get PDF
    Background: Venous thromboembolism (VTE) is a common complication of critical illness with important clinical consequences. The Prophylaxis for ThromboEmbolism in Critical Care Trial (PROTECT) is a multicenter, blinded, randomized controlled trial comparing the effectiveness of the two most common pharmocoprevention strategies, unfractionated heparin (UFH) and low molecular weight heparin (LMWH) dalteparin, in medical-surgical patients in the intensive care unit (ICU). E-PROTECT is a prospective and concurrent economic evaluation of the PROTECT trial. Methods/Design: The primary objective of E-PROTECT is to identify and quantify the total (direct and indirect, variable and fixed) costs associated with the management of critically ill patients participating in the PROTECT trial, and, to combine costs and outcome results to determine the incremental cost-effectiveness of LMWH versus UFH, from the acute healthcare system perspective, over a data-rich time horizon of ICU admission and hospital admission. We derive baseline characteristics and probabilities of in-ICU and in-hospital events from all enrolled patients. Total costs are derived from centers, proportional to the numbers of patients enrolled in each country. Direct costs include medication, physician and other personnel costs, diagnostic radiology and laboratory testing, operative and non-operative procedures, costs associated with bleeding, transfusions and treatment-related complications. Indirect costs include ICU and hospital ward overhead costs. Outcomes are the ratio of incremental costs per incremental effects of LMWH versus UFH during hospitalization; incremental cost to prevent a thrombosis at any site (primary outcome); incremental cost to prevent a pulmonary embolism, deep vein thrombosis, major bleeding event or episode of heparin-induced thrombocytopenia (secondary outcomes) and incremental cost per life-year gained (tertiary outcome). Pre-specified subgroups and sensitivity analyses will be performed and confidence intervals for the estimates of incremental cost-effectiveness will be obtained using bootstrapping. Discussion: This economic evaluation employs a prospective costing methodology concurrent with a randomized controlled blinded clinical trial, with a pre-specified analytic plan, outcome measures, subgroup and sensitivity analyses. This economic evaluation has received only peer-reviewed funding and funders will not play a role in the generation, analysis or decision to submit the manuscripts for publication. Trial registration: Clinicaltrials.gov Identifier: NCT00182143 . Date of registration: 10 September 2005.Critical Care Medicine, Division ofMedicine, Department ofMedicine, Faculty ofNon UBCReviewedFacult
    corecore