373 research outputs found

    Narrow Moving Fe K-alpha lines from magnetic flares in AGN

    Full text link
    We point out that luminous magnetic flares, thought to occur in standard AGN accretion disks, cannot be located much higher than few pressure scale heights above the disk. Using this fact, we estimate the fraction of the disk surface illuminated by a typical flare. This fraction turns out to be very small for geometrically thin disks, which implies that the instantaneous Fe K-alpha emission line from a specific magnetic flare is narrow. The line is red- or blue-shifted depending on the position of the observer relative to the flare and sweeps across the line band with time. We present several examples of theoretical time-resolved line profiles from such flares for a non-rotating black hole. The observations of such moving features with future X-ray telescopes will present a powerful test of the accretion disk geometry and may also test General Relativity in the strong field limit.Comment: Revised; no major changes in conclusion

    MHD consistent cellular automata (CA) models II. Applications to solar flares

    Full text link
    In Isliker et al. (2000b), an extended cellular automaton (X-CA) model for solar flares was introduced. In this model, the interpretation of the model's grid-variable is specified, and the magnetic field, the current, and an approximation to the electric field are yielded, all in a way that is consistent with Maxwell's and the MHD equations. Here, we reveal which relevant plasma physical processes are implemented by the X-CA model and in what form, and what global physical set-up is assumed by this model when it is in its natural state (SOC). The basic results are: (1) On large-scales, all variables show characteristic quasi-symmetries. (2) The global magnetic topology forms either (i) closed magnetic field lines, or (ii) an arcade of field lines above the bottom plane line, if the model is slightly modified. (3) In case of the magnetic topology (ii), loading can be interpreted as if there were a plasma which flows predominantly upwards, whereas in case of the magnetic topology (i), as if there were a plasma flow expanding from the neutral line. (4) The small-scale physics in the bursting phase represent localized diffusive processes. (5) The local diffusivity usually has a value which is effectively zero, and it turns locally to an anomalous value if a threshold is exceeded, whereby diffusion dominates the quiet evolution (loading). (6) Flares (avalanches) are accompanied by the appearance of localized, intense electric fields. (7) In a variant on the X-CA model, the magnitude of the current is used directly in the instability criterion. First results indicate that the SOC state persists. (8) The current-dissipation during flares is spatially fragmented into a large number of dissipative current-surfaces of varying sizes, which show a highly dynamic temporal evolution.Comment: 13 pages, 12 figures; in press at Astronomy and Astrophysics (2001

    A self-organized criticality model for ion temperature gradient (ITG) mode driven turbulence in confined plasma

    Full text link
    A new Self-Organized Criticality (SOC) model is introduced in the form of a Cellular Automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e. a heating process and a local diffusive process that sets on if a threshold in the normalized ion temperature gradient R/L_T is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.Comment: In press at Physics of Plasmas, July 2010; 11 pages, 5 figure
    • …
    corecore