5 research outputs found

    Crystal structure and Hirshfeld surface analysis of 2-{[7-acetyl-8-(4-chlorophenyl)-4-cyano-6-hydroxy-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}-N-(4-chlorophenyl)acetamide

    No full text
    In the title molecule, C28H25Cl2N3O3S, the heterocyclic portion of the tetrahydroisoquinoline unit is planar while the cyclohexene ring adopts a twist-boat conformation. The two 4-chlorophenyl groups extend away from one side of this unit while the hydroxyl and acetyl groups extend away from the opposite side and form an intramolecular O-H center dot center dot center dot O hydrogen bond. The crystal packing consists of layers parallel to the bc plane. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H center dot center dot center dot H (37.3%), Cl center dot center dot center dot H/H center dot center dot center dot Cl (17.6%), O center dot center dot center dot H/H center dot center dot center dot O (11.1%), C center dot center dot center dot H/H center dot center dot center dot C (10.9%) and N center dot center dot center dot H/H center dot center dot center dot N (9.7%) interactions

    Crystal structure and Hirshfeld surface analysis of 2-{[7-acetyl-4-cyano-6-hydroxy-8-(4-methoxyphen-yl)-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}acetic acid ethyl ester

    No full text
    In the title molecule, C25H28N2O5S, (alternative name ethyl 2-{[7-acetyl-4-cyano-6- hydroxy-8-(4-methoxyphenyl)-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}acetate) the 4-methoxyphenyl group is disposed on one side of the bicyclic core and the oxygen atoms of the hydroxyl and acetyl groups are disposed on the other side. In the crystal, a layered structure parallel to the ac plane is generated by O-H center dot center dot center dot O and C-H center dot center dot center dot O hydrogen bonds plus C-H center dot center dot center dot pi(ring) interactions

    X-ray Diffraction, Spectroscopy, Optical Properties, NPA, NBO, FMO, and Hirshfeld Surface Analyses of Two Newly Synthesized Piperidinium Ionic Liquids

    No full text
    The present study elaborates on the synthesis, crystal structure, and computational studies of two new ionic liquids. In the crystal structure, [C5H12N][C21H14ClN2O2S] (4a), the anions form chains along the a-axis direction through C—H···π(ring) interactions. These are connected into layers that run approximately parallel to the ac plane by a variety of hydrogen bonds. In the compound structure, [C5H12N][C18H15N2O2S] (4b), the two ions are primarily associated by an N—H···N hydrogen bond. In the crystal structure, layers parallel to the bc plane are formed by pairs of C—H···O and N—H···S hydrogen bonds and by C—H···π(ring) interactions. A theoretical study reveals that 4a has lower energy than 4b and is more stable. The NBO and DOS studies further confine the liquids’ structural reactivity and electronic properties. The quantum theory of atoms in a molecule (QTAIM) analysis reveals the important non-covalent interactions among the fragments and charge transfer. The global reactivity descriptors indicate their molecular reactivity relationship with the presence of functional groups. The remarkable polarizability (αo) and hyperpolarizability (βo) values indicate their optical and nonlinear optical (NLO) properties. Furthermore, the analysis performed by CrystalExplorer shows the intermolecular interactions and reactive sites between cations and anions in ionic liquids. The 2D fingerprint plots and Hirshfeld surfaces indicate the major interactions of crystals with neighboring elements in crystal packing. For both compounds, the H···H interactions are significantly higher than the other element interactions

    Synthesis, Crystal Growth, and Computational Investigation of New Tetrahydroisoquinoline Derivatives Potent against Molecule Nitric Oxide Synthases

    No full text
    In the present work, we describe the synthesis of new tetrahydroisoquinoline derivatives and the crystal structures of two of them. Density functional theory (DFT) investigations at the B3LYP/6-31+G(d,p) level provided their structural reactivity and nonlinear optical properties. The low HOMO-LUMO gaps (EH-L) suggest a soft nature and higher reactivity, while calculated global reactivity descriptors provide assessments of their reactivity and electronic stability. The calculated natural bonding molecular orbital (NBO) charges show excellent charge separation (charge transfer) and identify the donor and acceptor parts of the molecules. Density of states (DOS) analyses show the newly generated energy states and reduced band gaps, which impart higher conductive properties. For surface reactivity, 3D MESP surfaces are plotted and show electron-rich sites near the nitrogen atoms of the tetrahydroisoquinoline rings. Nonlinear optical (NLO) properties of the crystals are predicted from calculated polarizability (αo) and hyperpolarizability (βo) values. For IVb, the αo and βo values are 415.53 and 1003.44 au. The remarkable value (1003.44 au) of the hyperpolarizability (βo) shows IVb has excellent NLO properties. Structural activity relationship analysis suggests that nitric oxide synthases are better targets for both compounds, and they were further subjected to molecular docking simulations to understand the binding efficiency. In addition, ADMET analyses were carried out to understand the potential activity of the molecules as drug candidates

    Synthesis, crystal structure investigation, Hirshfeld and DFT studies of newly synthesized dihydroisoquinoline derivatives

    No full text
    Isoquinoline and its derivatives, which constitute an important category of heterocyclic compounds and are found in a variety of naturally occurring alkaloids, serve a variety of biological purposes such as a potent agonist for human melatonin receptors 1. This research was conducted in an attempt to develop new dihydroisoquinoline molecules (III and IV). Single-crystal X-ray crystallography study validated their structures. The Hirshfeld surface analysis identifies intermolecular interactions by using a 2-D fingerprint map to recognize each type's relative contribution H⋅⋅⋅H connections are discovered to be dominating. The interaction energies between chemical pairs in crystal structures were found using an energy framework analysis. The DFT investigation demonstrates the electronic stability and reactivity of the compounds using the HOMO-LUMO and global reactivity descriptors, indicating that IV has higher chemical reactivity than III. The derived polarizability (αo) and hyperpolarizability (βo) values were used to calculate the optical and nonlinear optical characteristics of III and IV. The IV's significant βo value (488.94 au) indicates that it has good optical and NLO qualities. Molecular docking simulation using human melatonin receptors 1 was used to better understand the binding interaction mechanism of the title compounds. In addition, ADMET evaluations were performed to establish the therapeutic potential of III and IV
    corecore