4 research outputs found
Temporal variations in the emission rates of some benzenoids and terpenoids emitted by wheat plants.
<p>Benzaldehyde (A), β-pinene (B) and geranyl acetone (C) emission rates from leaves of drought-stressed (0, 2, 5, 8 and 10 days without water) wheat plants after priming with <i>Bacillus thuringiensis</i> AZP2 are demonstrated. The error bars indicate +SE for three biological replicates. Statistical analysis and levels of significance as in Fig. 4.</p
Effect of priming by <i>Bacillus thuringiensis</i> AZP2 on wheat <i>(Triticum aestivum L. cv. Stava)</i> on average (±SD) growth characteristics, water use efficiency and antioxidant enzyme activities.
1<p>Analysis of plant root was conducted by Root Reader3D Imaging and Analysis System and manually <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0096086#pone.0096086-Niinemets1" target="_blank">[7]</a>.</p>2<p>Twelve plants per treatment were sampled. Roots with adhering soil (RAS) were carefully separated from bulk soil by shaking. Soil and root dry mass (RT) was recorded after drying the samples at 105°C, and RAS/RT ratio was calculated.</p>3<p>Twelve plants were carefully separated from soil by shaking followed by washing the roots in distilled water and left to drain in Petri dishes with water to maintain humidity. Root system characteristics were evaluated by Zeiss LSM 710 microscope.</p>4<p>Water use efficiency is defined as the ratio of total plant dry mass per total water used.</p>5<p>MDHAR - Monodehydroascorbate reductase, GR- Glutathione reductase, SOD- Superoxide dismutase, CAT-Catalase.</p><p>See Materials and Methods for enzyme extraction and activity measurements.</p><p>*Means followed by the same letter are not significantly different at p≤0.01. See Experimental procedures.</p
Enhancement of wheat (<i>Triticum aestivum</i>) drought tolerance by <i>Bacillus thuringiensis</i> AZP2 and <i>Paenibacillus polymyxa</i> B in sand soil.
<p>Panel A demonstrates the effect of AZP2 and B priming on seedlings survival after a severe 10-day drought stress episode. Panel B shows the effect of AZP2 priming on whole plant dry mass after 8 days growth without watering. The statistical analysis in (A) is based on a three-way ANOVA (stress, strains (i.e. AZP2 and B) and stress exposure time). ANOVA was conducted on two plant groups with 16 replicates in each group. *** indicate highly significant effects for the tested factor at <i>P≤</i>0.01. In B, eight independent experiments were performed, and treatments labelled with the same letter are not significantly different at <i>P≤</i>0.01.</p
Net assimilation rate (A) and stomatal conductance (B) of <i>Bacillus thuringiensis</i> AZP2-primed wheat seedlings under drought stress.
<p>The data are shown for plants grown for 0, 2, 5, 8 and 10 days without water. The error bars indicate +SE for three biological replicates. Statistical analysis is based on three-way ANOVA with stress, strains (<i>Bacillus thuringiensis</i> AZP2 vs. <i>P. polymyxa</i> B) and stress exposure time as factors. ***, ** and ns, indicate highly significant, significant or non-significant effects for the tested factor at <i>P<</i>0.05.</p