37 research outputs found

    Raf Kinase Inhibitor Protein (RKIP) expression and function in human myometrium and leiomyoma

    Get PDF
    Many growth factors been identified in human myometrium and leiomyoma and activate multiple signaling pathways in order to regulate major cellular processes, including proliferation and fibrosis which are linked to uterine leiomyoma development and growth. The Raf kinase inhibitor protein (RKIP) has emerging roles as regulator of multiple signaling networks including mitogen activated protein (MAP) kinase cascade, as well as interaction with glycogen synthase kinase 3 (GSK3). In our study, we aimed to investigate the presence of RKIP in human myometrium and leiomyoma as well as to determine the effect of locostatin (RKIP inhibitor) on extracellular matrix (ECM) production, proliferation and migration in human myometrial and leiomyoma cells. Myometrial and leiomyoma tissues were used to investigate the localization and the expression level of RKIP through immunohistochemistry and western blotting. Myometrial and leiomyoma cells were treated with locostatin to measure ECM expression by real time PCR, GSK3b expression by western blotting, cell migration by wound-healing assay and cell proliferation by MTT assay. We found that RKIP is expressed in human myometrial and leiomyoma tissue. Locostatin treatment resulted in the activation of the MAPK signal pathway (ERK phosphorylation), providing a powerful validation of our targeting protocol. Further, RKIP inhibition by locostatin reduces ECM components. Moreover, the inhibition of RKIP by locostatin impaired cell proliferation and migration in both leiomyoma and myometrial cells. Finally, locostatin treatment reduced GSK3β expression. Therefore, even if the activation of MAPK pathway should increase proliferation and migration, the destabilization of GSK3β leads to the reduction of proliferation and migration of myometrial and leiomyoma cells

    TGF beta family members function in uterine healthy and fibrotic smooth muscle cells

    Get PDF
    Uterine leiomyomas are the most common benign tumors of fertile women and the most common indication for hysterectomy. Despite the high prevalence, significant health problems, and huge economical impact on the healthcare system, relatively little is understood about the etiology and pathophysiology of uterine leiomyoma (1). Consequently, medical treatments are still limited (2). The role of the growth factors as ultimate mediators of the steroids hormone is evident in the modulation of the cell proliferation and the morphological cells appearance (3). Activin-A and myostatin are growth factors belonging to TGF-β super family expressed and acting in myometrial (4,5) and leiomyoma cells (6) We aimed to explore the functions of activin and myostatin in human myometrial and leiomyoma cells. First we tested both Smad and non-Smad signaling pathways by western blot. We found that activin-A and myostatin can activate only Smad signaling pathway in both myometrial and leiomyoma cells. Next we explored the effect on cell proliferation and on fibrotic phenotype. We found that activin-A and myostatin are able to suppress primary myometrial cell proliferation but they cannot alter the proliferation of leiomyoma cells. In the next step, we found that activin-A can significantly increase fibronectin expression in leiomyoma cells. Those above results suggest that activin-A and myostatin may express antiproliferative and/or fibrotic effects depending on the cell types by activating Smad signaling pathway

    Natural Products and Disease Prevention, Relief and Treatment

    No full text
    This Special Issue focusses on the role of natural products in disease prevention, relief and treatment [...

    Green Tea in Reproductive Cancers: Could Treatment Be as Simple?

    No full text
    Green tea originates from the tea plant Camellia sinensis and is one of the most widely consumed beverages worldwide. Green tea polyphenols, commonly known as catechins, are the major bioactive ingredients and account for green tea’s unique health benefits. Epigallocatechin-3-gallate (EGCG), is the most potent catechin derivative and has been widely studied for its pro- and anti-oxidative effects. This review summarizes the chemical and chemopreventive properties of green tea in the context of female reproductive cancers. A comprehensive search of PubMed and Google Scholar up to December 2022 was conducted. All original and review articles related to green tea or EGCG, and gynecological cancers published in English were included. The findings of several in vitro, in vivo, and epidemiological studies examining the effect of green tea on reproductive cancers, including ovarian, cervical, endometrial, and vulvar cancers, are presented. Studies have shown that this compound targets specific receptors and intracellular signaling pathways involved in cancer pathogenesis. The potential benefits of using green tea in the treatment of reproductive cancers, alone or in conjunction with chemotherapeutic agents, are examined, shedding light on new therapeutic strategies for the management of female reproductive cancers

    Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics

    No full text
    Uterine leiomyoma (also known as fibroid or myoma) is the most common benign tumor of the uterus found in women of reproductive age. It is not usually fatal but can produce serious clinical symptoms, including excessive uterine bleeding, pelvic pain or pressure, infertility and pregnancy complications. Due to lack of effective medical treatments surgery has been a definitive choice for the management of this tumor

    Bioinformatic tools for microRNA dissection

    No full text
    Recently, microRNAs (miRNAs) have emerged as important elements of gene regulatory networks. MiRNAs are endogenous single-stranded non-coding RNAs (∼22-nt long) that regulate gene expression at the post-transcriptional level. Through pairing with mRNA, miRNAs can down-regulate gene expression by inhibiting translation or stimulating mRNA degradation. In some cases they can also up-regulate the expression of a target gene. MiRNAs influence a variety of cellular pathways that range from development to carcinogenesis. The involvement of miRNAs in several human diseases, particularly cancer, makes them potential diagnostic and prognostic biomarkers. Recent technological advances, especially high-throughput sequencing, have led to an exponential growth in the generation of miRNA-related data. A number of bioinformatic tools and databases have been devised to manage this growing body of data. We analyze 129 miRNA tools that are being used in diverse areas of miRNA research, to assist investigators in choosing the most appropriate tools for their needs
    corecore