39 research outputs found

    Novel Cytochrome P450, cyp6a17, Is Required for Temperature Preference Behavior in Drosophila

    Get PDF
    Perception of temperature is an important brain function for organisms to survive. Evidence suggests that temperature preference behavior (TPB) in Drosophila melanogaster, one of poikilothermal animals, is regulated by cAMP-dependent protein kinase (PKA) signaling in mushroom bodies of the brain. However, downstream targets for the PKA signaling in this behavior have not been identified. From a genome-wide search for the genes regulated by PKA activity in the mushroom bodies, we identified the cyp6a17 Cytochrome P450 gene as a new target for PKA. Our detailed analysis of mutants by genetic, molecular and behavioral assays shows that cyp6a17 is essential for temperature preference behavior. cyp6a17 expression is enriched in the mushroom bodies of the adult brain. Tissue-specific knockdown and rescue experiments demonstrate that cyp6a17 is required in the mushroom bodies for normal temperature preference behavior. This is the first study, to our knowledge, to show PKA-dependent expression of a cytochrome P450 gene in the mushroom bodies and its role as a key factor for temperature preference behavior. Taken together, this study reveals a new PKA-Cytochrome P450 pathway that regulates the temperature preference behavior

    Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca

    Get PDF
    Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic soil bacterium Thermobifida fusca. The enzyme was overexpressed in Escherichia coli at up to 14% of total soluble protein and purified to homogeneity in three steps. CYP154H1 activity was reconstituted using putidaredoxin reductase and putidaredoxin from Pseudomonas putida DSM 50198 as surrogate electron transfer partners. In biocatalytic reactions with different aliphatic and aromatic substrates of varying size, the enzyme converted small aromatic and arylaliphatic compounds like ethylbenzene, styrene, and indole. Furthermore, CYP154H1 also accepted different arylaliphatic sulfides as substrates chemoselectively forming the corresponding sulfoxides and sulfones. The enzyme is moderately thermostable with an apparent melting temperature of 67°C and exhibited still 90% of initial activity after incubation at 50°C

    Versatile capacity of shuffled cytochrome P450s for dye production

    No full text
    DNA family shuffling is a relatively new method of directed evolution used to create novel enzymes in order to improve their existing properties or to develop new features. This method of evolution in vitro has one basic requirement: a high similarity of initial parental sequences. Cytochrome P450 enzymes are relatively well conserved in their amino acid sequences. Members of the same family can have more than 40% of sequence identity at the protein level and are therefore good candidates for DNA family shuffling. These xenobiotic-metabolising enzymes have an ability to metabolise a wide range of chemicals and produce a variety of products including blue pigments such as indigo. By applying the specifically designed DNA family shuffling approach, catalytic properties of cytochrome P450 enzymes were further extended in the chimeric progeny to include a new range of blue colour formations. This mini-review evokes the possibility of exploiting directed evolution of cytochrome P450s and the novel enzymes created by DNA family shuffling for the production of new dyes.Copyright Springer-Verlag 200
    corecore