7 research outputs found

    Robust Modeling and Predictions of Greenhouse Gas Fluxes from Forest and Wetland Ecosystems

    Get PDF
    The land-atmospheric exchanges of carbon dioxide (CO2) and methane (CH4) are major drivers of global warming and climatic changes. The greenhouse gas (GHG) fluxes indicate the dynamics and potential storage of carbon in terrestrial and wetland ecosystems. Appropriate modeling and prediction tools can provide a quantitative understanding and valuable insights into the ecosystem carbon dynamics, while aiding the development of engineering and management strategies to limit emissions of GHGs and enhance carbon sequestration. This dissertation focuses on the development of data-analytics tools and engineering models by employing a range of empirical and semi-mechanistic approaches to robustly predict ecosystem GHG fluxes at variable scales. Scaling-based empirical models were developed by using an extended stochastic harmonic analysis algorithm to achieve spatiotemporally robust predictions of the diurnal cycles of net ecosystem exchange (NEE). A single set of model parameters representing different days/sites successfully estimated the diurnal NEE cycles for various ecosystems. A systematic data-analytics framework was then developed to determine the mechanistic, relative linkages of various climatic and environmental drivers with the GHG fluxes. The analytics, involving big data for diverse ecosystems of the AmeriFLUX network, revealed robust latent patterns: a strong control of radiation-energy variables, a moderate control of temperature-hydrology variables, and a relatively weak control of aerodynamic variables on the terrestrial CO2 fluxes. The data-analytics framework was then employed to determine the relative controls of different climatic, biogeochemical and ecological drivers on CO2 and CH4 fluxes from coastal wetlands. The knowledge was leveraged to develop nonlinear, predictive models of GHG fluxes using a small set of environmental variables. The models were presented in an Excel spreadsheet as an ecological engineering tool to estimate and predict the net ecosystem carbon balance of the wetland ecosystems. The research also investigated the emergent biogeochemical-ecological similitude and scaling laws of wetland GHG fluxes by employing dimensional analysis from fluid mechanics. Two environmental regimes were found to govern the wetland GHG fluxes. The discovered similitude and scaling laws can guide the development of data-based mechanistic models to robustly predict wetland GHG fluxes under a changing climate and environment

    A novel index-based decision support toolkit for safe reopening following a generalized lockdown in low and middle-income countries

    Get PDF
    While the effectiveness of lockdowns to reduce Coronavirus Disease-2019 (COVID-19) transmission is well established, uncertainties remain on the lifting principles of these restrictive interventions. World Health Organization recommends case positive rate of 5% or lower as a threshold for safe reopening. However, inadequate testing capacity limits the applicability of this recommendation, especially in the low-income and middle-income countries (LMICs). To develop a practical reopening strategy for LMICs, in this study, we first identify the optimal timing of safe reopening by exploring accessible epidemiological data of 24 countries during the initial COVID-19 surge. We find that a safe opening can occur two weeks after the crossover of daily infection and recovery rates while maintaining a negative trend in daily new cases. Epidemiologic SIRM model-based example simulation supports our findings. Finally, we develop an easily interpretable large-scale reopening (LSR) index, which is an evidence-based toolkit—to guide/inform reopening decision for LMICs

    A novel index-based decision support toolkit for safe reopening following a generalized lockdown in low and middle-income countries

    Get PDF
    While the effectiveness of lockdowns to reduce Coronavirus Disease-2019 (COVID-19) transmission is well established, uncertainties remain on the lifting principles of these restrictive interventions. World Health Organization recommends case positive rate of 5% or lower as a threshold for safe reopening. However, inadequate testing capacity limits the applicability of this recommendation, especially in the low-income and middle-income countries (LMICs). To develop a practical reopening strategy for LMICs, in this study, we first identify the optimal timing of safe reopening by exploring accessible epidemiological data of 24 countries during the initial COVID-19 surge. We find that a safe opening can occur two weeks after the crossover of daily infection and recovery rates while maintaining a negative trend in daily new cases. Epidemiologic SIRM model-based example simulation supports our findings. Finally, we develop an easily interpretable large-scale reopening (LSR) index, which is an evidence-based toolkit-to guide/inform reopening decision for LMICs

    Environmental controls, emergent scaling, and predictions of greenhouse gas (GHG) fluxes in coastal salt marshes

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 123 (2018): 2234-2256, doi:10.1029/2018JG004556.Coastal salt marshes play an important role in mitigating global warming by removing atmospheric carbon at a high rate. We investigated the environmental controls and emergent scaling of major greenhouse gas (GHG) fluxes such as carbon dioxide (CO2) and methane (CH4) in coastal salt marshes by conducting data analytics and empirical modeling. The underlying hypothesis is that the salt marsh GHG fluxes follow emergent scaling relationships with their environmental drivers, leading to parsimonious predictive models. CO2 and CH4 fluxes, photosynthetically active radiation (PAR), air and soil temperatures, well water level, soil moisture, and porewater pH and salinity were measured during May–October 2013 from four marshes in Waquoit Bay and adjacent estuaries, MA, USA. The salt marshes exhibited high CO2 uptake and low CH4 emission, which did not significantly vary with the nitrogen loading gradient (5–126 kg · ha−1 · year−1) among the salt marshes. Soil temperature was the strongest driver of both fluxes, representing 2 and 4–5 times higher influence than PAR and salinity, respectively. Well water level, soil moisture, and pH did not have a predictive control on the GHG fluxes, although both fluxes were significantly higher during high tides than low tides. The results were leveraged to develop emergent power law‐based parsimonious scaling models to accurately predict the salt marsh GHG fluxes from PAR, soil temperature, and salinity (Nash‐Sutcliffe Efficiency = 0.80–0.91). The scaling models are available as a user‐friendly Excel spreadsheet named Coastal Wetland GHG Model to explore scenarios of GHG fluxes in tidal marshes under a changing climate and environment.National Oceanic and Atmospheric Administration Grant Numbers: NA09NOS4190153, NA14NOS4190145; National Science Foundation (NSF) Grant Numbers: 1705941, 1561941/1336911; USGS LandCarbon Program; NOAA National Estuarine Research Reserve Science Collaborative Grant Number: NA09NOS4190153 and NA14NOS41901452019-01-2

    Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eagle, M. J., Kroeger, K. D., Spivak, A. C., Wang, F., Tang, J., Abdul-Aziz, O. I., Ishtiaq, K. S., O’Keefe Suttles, J., & Mann, A. G. Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands. The Science of the Total Environment, 848, (2022): 157682, https://doi.org/10.1016/j.scitotenv.2022.157682.Coastal wetlands provide key ecosystem services, including substantial long-term storage of atmospheric CO2 in soil organic carbon pools. This accumulation of soil organic matter is a vital component of elevation gain in coastal wetlands responding to sea-level rise. Anthropogenic activities that alter coastal wetland function through disruption of tidal exchange and wetland water levels are ubiquitous. This study assesses soil vertical accretion and organic carbon accretion across five coastal wetlands that experienced over a century of impounded hydrology, followed by restoration of tidal exchange 5 to 14 years prior to sampling. Nearby marshes that never experienced tidal impoundment served as controls with natural hydrology to assess the impact of impoundment and restoration. Dated soil cores indicate that elevation gain and carbon storage were suppressed 30–70 % during impoundment, accounting for the majority of elevation deficit between impacted and natural sites. Only one site had substantial subsidence, likely due to oxidation of soil organic matter. Vertical and carbon accretion gains were achieved at all restored sites, with carbon burial increasing from 96 ± 33 to 197 ± 64 g C m−2 y−1. The site with subsidence was able to accrete at double the rate (13 ± 5.6 mm y−1) of the natural complement, due predominantly to organic matter accumulation rather than mineral deposition, indicating these ecosystems are capable of large dynamic responses to restoration when conditions are optimized for vegetation growth. Hydrologic restoration enhanced elevation resilience and climate benefits of these coastal wetlands.This project was supported by the U.S. Geological Survey Coastal and Marine Hazards and Resources Program and the USGS Land Change Science Program's LandCarbon program, NOAA National Estuarine Research Reserve Science Collaborative NA14NOS4190145, and MIT Sea Grant 2015-R/RC-141. Contributions of Abdul-Aziz were also supported by NSF CBET Environmental Sustainability Award No. 1705941. Our stakeholder partners, including the Cape Cod National Seashore, Waquoit Bay National Estuarine Research Reserve, and the Bringing Wetlands to Market project team, and Towns and Conservation Commissions, including Eastham, Barnstable, Brewster, Yarmouth, Denis, Sandwich and Orleans, were instrumental in providing research support and site access

    Carbon Dioxide Fluxes Reflect Plant Zonation and Belowground Biomass in a Coastal Marsh

    Get PDF
    Coastal wetlands are major global carbon sinks; however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, greenhouse gas (GHG) fluxes were compared among major plant-defined zones during growing seasons. Carbon dioxide (CO2) and methane (CH4) fluxes were compared in two mensurative experiments during summer months (2012–2014) that included low marsh (Spartina alterniflora), high marsh (Distichlis spicata and Juncus gerardiidominated), invasive Phragmites australis zones, and unvegetated ponds. Day- and nighttime fluxes were also contrasted in the native marsh zones. N2O fluxes were measured in parallel with CO2 and CH4 fluxes, but were not found to be significant. To test the relationships of CO2 and CH4 fluxes with several native plant metrics, a multivariate nonlinear model was used. Invasive P. australis zones (−7 to −15 ÎŒmol CO2·m−2·s−1) and S. alterniflora low marsh zones (up to −14 ÎŒmol CO2·m−2·s−1) displayed highest average CO2 uptake rates, while those in the native high marsh zone (less than −2 ÎŒmol CO2·m−2·s−1) were much lower. Unvegetated ponds were typically small sources of CO2 to the atmosphere (\u3c0.5 ÎŒmol CO2·m−2·s−1). Nighttime emissions of CO2 averaged only 35% of daytime uptake in the low marsh zone, but they exceeded daytime CO2 uptake by up to threefold in the native high marsh zone. Based on modeling, belowground biomass was the plant metric most strongly correlated with CO2 fluxes in native marsh zones, while none of the plant variables correlated significantly with CH4 fluxes. Methane fluxes did not vary between day and night and did not significantly offset CO2 uptake in any vegetated marsh zones based on sustained global warming potential calculations. These findings suggest that attention to spatial zonation as well as expanded measurements and modeling of GHG emissions across greater temporal scales will help to improve accuracy of carbon accounting in coastal marshe

    Carbon Dioxide Fluxes Reflect Plant Zonation and Belowground Biomass in a Coastal Marsh

    Get PDF
    Coastal wetlands are major global carbon sinks; however, they are heterogeneous and dynamic ecosystems. To characterize spatial and temporal variability in a New England salt marsh, greenhouse gas (GHG) fluxes were compared among major plant-defined zones during growing seasons. Carbon dioxide (CO2) and methane (CH4) fluxes were compared in two mensurative experiments during summer months (2012–2014) that included low marsh (Spartina alterniflora), high marsh (Distichlis spicata and Juncus gerardiidominated), invasive Phragmites australis zones, and unvegetated ponds. Day- and nighttime fluxes were also contrasted in the native marsh zones. N2O fluxes were measured in parallel with CO2 and CH4 fluxes, but were not found to be significant. To test the relationships of CO2 and CH4 fluxes with several native plant metrics, a multivariate nonlinear model was used. Invasive P. australis zones (−7 to −15 ÎŒmol CO2·m−2·s−1) and S. alterniflora low marsh zones (up to −14 ÎŒmol CO2·m−2·s−1) displayed highest average CO2 uptake rates, while those in the native high marsh zone (less than −2 ÎŒmol CO2·m−2·s−1) were much lower. Unvegetated ponds were typically small sources of CO2 to the atmosphere (\u3c0.5 ÎŒmol CO2·m−2·s−1). Nighttime emissions of CO2 averaged only 35% of daytime uptake in the low marsh zone, but they exceeded daytime CO2 uptake by up to threefold in the native high marsh zone. Based on modeling, belowground biomass was the plant metric most strongly correlated with CO2 fluxes in native marsh zones, while none of the plant variables correlated significantly with CH4 fluxes. Methane fluxes did not vary between day and night and did not significantly offset CO2 uptake in any vegetated marsh zones based on sustained global warming potential calculations. These findings suggest that attention to spatial zonation as well as expanded measurements and modeling of GHG emissions across greater temporal scales will help to improve accuracy of carbon accounting in coastal marshe
    corecore