2,042 research outputs found
Spatial propagation of excitonic coherence enables ratcheted energy transfer
Experimental evidence shows that a variety of photosynthetic systems can
preserve quantum beats in the process of electronic energy transfer, even at
room temperature. However, whether this quantum coherence arises in vivo and
whether it has any biological function have remained unclear. Here we present a
theoretical model that suggests that the creation and recreation of coherence
under natural conditions is ubiquitous. Our model allows us to theoretically
demonstrate a mechanism for a ratchet effect enabled by quantum coherence, in a
design inspired by an energy transfer pathway in the Fenna-Matthews-Olson
complex of the green sulfur bacteria. This suggests a possible biological role
for coherent oscillations in spatially directing energy transfer. Our results
emphasize the importance of analyzing long-range energy transfer in terms of
transfer between inter-complex coupling (ICC) states rather than between site
or exciton states.Comment: Accepted version for Phys. Rev. E. 14 pages, 7 figure
Quantum entanglement in photosynthetic light harvesting complexes
Light harvesting components of photosynthetic organisms are complex, coupled,
many-body quantum systems, in which electronic coherence has recently been
shown to survive for relatively long time scales despite the decohering effects
of their environments. Within this context, we analyze entanglement in
multi-chromophoric light harvesting complexes, and establish methods for
quantification of entanglement by presenting necessary and sufficient
conditions for entanglement and by deriving a measure of global entanglement.
These methods are then applied to the Fenna-Matthews-Olson (FMO) protein to
extract the initial state and temperature dependencies of entanglement. We show
that while FMO in natural conditions largely contains bipartite entanglement
between dimerized chromophores, a small amount of long-range and multipartite
entanglement exists even at physiological temperatures. This constitutes the
first rigorous quantification of entanglement in a biological system. Finally,
we discuss the practical utilization of entanglement in densely packed
molecular aggregates such as light harvesting complexes.Comment: 14 pages, 7 figures. Improved presentation, published versio
A mechanical model of normal and anomalous diffusion
The overdamped dynamics of a charged particle driven by an uniform electric
field through a random sequence of scatterers in one dimension is investigated.
Analytic expressions of the mean velocity and of the velocity power spectrum
are presented. These show that above a threshold value of the field normal
diffusion is superimposed to ballistic motion. The diffusion constant can be
given explicitly. At the threshold field the transition between conduction and
localization is accompanied by an anomalous diffusion. Our results exemplify
that, even in the absence of time-dependent stochastic forces, a purely
mechanical model equipped with a quenched disorder can exhibit normal as well
as anomalous diffusion, the latter emerging as a critical property.Comment: 16 pages, no figure
Beam Spreading System Employing the Double-scattering Method for Proton-therapy Experiments at CYRIC
Electronic Coherence Dephasing in Excitonic Molecular Complexes: Role of Markov and Secular Approximations
We compare four different types of equations of motion for reduced density
matrix of a system of molecular excitons interacting with thermodynamic bath.
All four equations are of second order in the linear system-bath interaction
Hamiltonian, with different approximations applied in their derivation. In
particular we compare time-nonlocal equations obtained from so-called
Nakajima-Zwanzig identity and the time-local equations resulting from the
partial ordering prescription of the cummulant expansion. In each of these
equations we alternatively apply secular approximation to decouple population
and coherence dynamics from each other. We focus on the dynamics of intraband
electronic coherences of the excitonic system which can be traced by coherent
two-dimensional spectroscopy. We discuss the applicability of the four
relaxation theories to simulations of population and coherence dynamics, and
identify features of the two-dimensional coherent spectrum that allow us to
distinguish time-nonlocal effects.Comment: 14 pages, 8 figure
Lazaroid U-74500A for warm ischemia and reperfusion injury of the canine small intestine
BACKGROUND: Although lazaroids have been shown to protect various organs from ischemia/reperfusion injury, results obtained in the small intestine have been conflicting. STUDY DESIGN: The canine small intestine was made totally ischemic for 2 hours by occluding the superior mesenteric artery and the superior mesenteric vein with interruption of the mesenteric collateral vessels. A lazaroid compound, U74500A, or a citrate vehicle was given intravenously to each of the six animals for 30 minutes before intestinal ischemia. Intestinal tissue blood flow, lipid peroxidation, neutrophil infiltration, adenine nucleotides and their catabolites, and histologic changes after reperfusion were determined. RESULTS: Lazaroid treatment attenuated decline of the mucosal and serosal blood flow after reperfusion. Accumulation of lipid peroxidation products and neutrophils in mucosal tissues was markedly inhibited by the treatment. Postischemic energy resynthesis was also augmented by lazaroid. Morphologically, mucosal architectures were better preserved with lazaroid treatment after reperfusion, and recovered to normal by postoperative day 3 in the treated group and by post-operative day 7 in control animals. CONCLUSIONS: Lazaroids protect the canine small intestine from ischemia/reperfusion injury by inhibiting lipid peroxidation and neutrophil infiltration. Dogs are tolerant of 2-hour normothermic complete intestinal ischemia
- âŠ