39 research outputs found

    Oxidative Stress in the Blood Labyrinthine Barrier in the Macula Utricle of Meniere’s Disease Patients

    Get PDF
    The blood labyrinthine barrier (BLB) is critical in the maintenance of inner ear ionic and fluid homeostasis. Recent studies using imaging and histopathology demonstrate loss of integrity of the BLB in the affected inner ear of Meniere’s disease (MD) patients. We hypothesized that oxidative stress is involved in the pathogenesis of BLB degeneration, and to date there are no studies of oxidative stress proteins in the human BLB. We investigated the ultrastructural and immunohistochemical changes of the BLB in the vestibular endorgan, the macula utricle, from patients with MD (n = 10), acoustic neuroma (AN) (n = 6) and normative autopsy specimens (n = 3) with no inner ear disease. Each subject had a well-documented clinical history and audiovestibular testing. Utricular maculae were studied using light and transmission electron microscopy and double labeling immunofluorescence. Vascular endothelial cells (VECs) were identified using isolectin B4 (IB4) and glucose-transporter-1 (GLUT-1). Pericytes were identified using alpha smooth muscle actin (αSMA) and phalloidin. IB4 staining of VECS was consistently seen in both AN and normative. In contrast, IB4 was nearly undetectable in all MD specimens, consistent with the significant VEC damage confirmed on transmission electron microscopy. GLUT-1 was present in MD, AN, and normative. αSMA and phalloidin were expressed consistently in the BLB pericytes in normative, AN specimen, and Meniere’s specimens. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and nitrotyrosine were used as markers of oxidative stress. The VECs of the BLB in Meniere’s had significantly higher levels of expression of iNOS and nitrotyrosine compared with normative and AN specimen. eNOS-IF staining showed similar patterns in normative and Meniere’s specimens. Microarray-based gene expression profiling confirmed upregulation of iNOS mRNA from the macula utricle of Meniere’s patients compared with AN. Nitrotyrosine, a marker recognized as a hallmark of inflammation, especially when seen in association with an upregulation of iNOS, was detected in the epithelial and stromal cells in addition to VECs in MD. Immunohistochemical and ultrastructural degenerative changes of the VEC suggest that these cells are the primary targets of oxidative stress, and pericyte pathology including degeneration and migration, likely also plays a role in the loss of integrity of the BLB and triggering of inflammatory pathways in MD. These studies advance our scientific understanding of oxidative stress in the human inner ear BLB and otopathology

    Immunohistochemical localization and mRNA expression of aquaporins in the macula utriculi of patients with Meniere’s disease and acoustic neuroma

    Get PDF
    Meniere’s disease is nearly invariably associated with endolymphatic hydrops (the net accumulation of water in the inner ear endolymphatic space). Vestibular maculae utriculi were acquired from patients undergoing surgery for Meniere’s disease and acoustic neuroma and from autopsy (subjects with normal hearing and balance). Quantitative immunostaining was conducted with antibodies against aquaporins (AQPs) 1, 4, and 6, Na+K+ATPase, Na+K+2Cl co-transporter (NKCC1), and α-syntrophin. mRNA was extracted from the surgically acquired utricles from subjects with Meniere’s disease and acoustic neuroma to conduct quantitative real-time reverse transcription with polymerase chain reaction for AQP1, AQP4, and AQP6. AQP1 immunoreactivity (−IR) was located in blood vessels and fibrocytes in the underlying stroma, without any apparent alteration in Meniere’s specimens when compared with acoustic neuroma and autopsy specimens. AQP4-IR localized to the epithelial basolateral supporting cells in Meniere’s disease, acoustic neuroma, and autopsy. In specimens from subjects with Meniere’s disease, AQP4-IR was significantly decreased compared with autopsy and acoustic neuroma specimens. AQP6-IR occurred in the sub-apical vestibular supporting cells in acoustic neuroma and autopsy samples. However, in Meniere’s disease specimens, AQP6-IR was significantly increased and diffusely redistributed throughout the supporting cell cytoplasm. Na+K+ATPase, NKCC1, and α-syntrophin were expressed within sensory epithelia and were unaltered in Meniere’s disease specimens. Expression of AQP1, AQP4, or AQP6 mRNA did not differ in vestibular endorgans from patients with Meniere’s disease. Changes in AQP4 (decreased) and AQP6 (increased) expression in Meniere’s disease specimens suggest that the supporting cell might be a cellular target

    Archival Human Temporal Bone: Anatomical and Histopathological Studies of Cochlear Implantation

    No full text
    Since being FDA approved in 1984, cochlear implantation has been used successfully to restore hearing in those with severe to profound hearing loss with broader applications including single-sided deafness, the use of hybrid electroacoustic stimulation, and implantation at all extremes of age. Cochlear implants have undergone multiple changes in the design aimed at improving the processing technology, while simultaneously minimizing the surgical trauma and foreign body reaction. The following review examines the human temporal bone studies regarding the anatomy of the human cochlea and how the anatomy relates to cochlear implant design, the factors related to complications after implantation, and the predictors of new tissue formation and osteoneogenesis. Histopathological studies are reviewed which aim to understand the potential implications of the effects of new tissue formation and inflammation following implantation

    Histopathologic Analysis of Temporal Bones With Otosclerosis Following Cochlear Implantation.

    No full text
    OBJECTIVE: Analyze changes in osteoneogenesis and fibrosis following cochlear implant (CI) surgery in patients with otosclerosis and compare differences based on insertion technique. BACKGROUND: When advanced otosclerotic disease extends to the otic capsule, severe and profound sensorineural hearing loss necessitates consideration of a cochlear implant. Histopathological analysis of the human temporal bone after implantation in the patient with otosclerosis may reveal important variables that predict CI success. METHODS: Histopathological evaluation of archival human temporal bones from subjects with a history of CI for cochlear otosclerosis. A total of 17 human temporal bones (HTB) were analyzed, 13 implanted, and 4 contralateral non-implanted controls. RESULTS: Histopathological studies revealed extensive osteoneogenesis and fibrosis which was more prominent at the cochleostomy insertion site in the basal turn of the cochlea often obliterating the scala tympani in the basal turn, and in some cases extending to the scala media and scala vestibuli. Cochlear hydrops was nearly universal in these cases. This contrasted with the round window insertion, which exhibited minimal osteoneogenesis within the cochlear duct. In addition, in the contralateral, unimplanted control ears, there was otosclerosis at the stapes footplate, fissula ante fenestrum but no osteoneogenesis within the cochlear duct. CONCLUSION: Cochleostomy approach to CI insertion in otosclerosis patients is associated with significant fibrosis, osteoneogenesis, and cochlear hydrops. A round window insertion technique can be utilized to help minimize these histopathologic findings whenever feasible
    corecore