7 research outputs found

    The modern era of light kaonic atom experiments

    Get PDF
    This review covers the modern era of experimental kaonic atom studies, encompassing 20 years of activity, defined by breakthroughs in technological developments which allowed performing a series of long-awaited precision measurements. Kaonic atoms are atomic systems where an electron is replaced by a negatively charged kaon, containing the strange quark, which interacts in the lowest orbits with the nucleus also by the strong interaction. As a result, their study offers the unique opportunity to perform experiments equivalent to scattering at vanishing relative energy. This allows one to study the strong interaction between the antikaon and the nucleon or the nucleus "at threshold," namely, at zero relative energy, without the need of ad hoc extrapolation to zero energy, as in scattering experiments. The fast progress achieved in performing precision light kaonic atom experiments, which also solved long-pending inconsistencies with theoretical calculations generated by old measurements, relies on the development of novel cryogenic targets, x-ray detectors, and the availability of pure and intense charged kaon beams, which propelled an unprecedented progress in the field. Future experiments, based on new undergoing technological developments, will further boost the kaonic atom studies, thus fostering a deeper understanding of the low-energy strong interaction extended to the second family of quarks

    Hunting the "impossible atoms" Pauli exclusion principle violation and spontaneous collapse of the wave function at test

    No full text
    The Pauli exclusion principle (PEP) and, more generally, the spin-statistics connection, are at the very basis of our understanding of matter, life and Universe. The PEP spurs, presently, a lively debate on its possible limits, deeply rooted in the very foundations of Quantum Mechanics. It is, therefore, extremely important to test the limits of its validity. The Violation of the PEP (VIP) experiment established the best limit on the probability that PEP is violated by electrons, using the method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method, the obtained results, and plans to go beyond the actual limit by upgrading the experimental apparatus. We discuss the possibility of using a similar experimental technique to search for X-rays as a signature of the spontaneous collapse of the wave function predicted by continuous spontaneous localization (CSL) theories

    Experimental Tests of Quantum Mechanics: Pauli Exclusion Principle and Spontaneous Collapse Models

    No full text
    The Pauli exclusion principle (PEP), as a consequence or the spin-statistics connection, is one of the basic principles of the modern physics. Being at the very basis of our understanding of matter, it spurs a lively debate on its possible limits, deeply rooted as it is in the very foundations of Quantum Field Theory. The VIP (VIolation of the Pauli exclusion principle) experiment is searching for a possible small violation of the PEP for electrons, using the method of searching for Pauli Exclusion Principle forbidden atomic transitions in copper. We describe the experimental method and the obtained results; we briefly present future plans to go beyond the actual limit by upgrading the experiment using vetoed new spectroscopic fast Silicon Drift Detectors. We also mention the possibility of using a similar experimental technique to search for possible X-rays generated in the spontaneous collapse models of quantum mechanics

    Kaonic 3He and 4He X-ray measurements in SIDDHARTA

    No full text
    The strong-interaction shift of kaonic 3He and 4He 2p states was measured using gaseous targets for the first time in the SIDDHARTA experiment. The determined shift of kaonic 4He is much smaller than the values obtained in the experiments performed in 70's and 80's. Thus, the problems in kaonic helium (the "kaonic helium puzzle") was definitely solved by our measurements. The first observation of the kaonic 3He X-rays was also achieved. The shift both of kaonic 3He and 4He was found to be as small as a few eV.Comment: Proc of Hadron201
    corecore