64 research outputs found

    A Novel Target of Action of Minocycline in NGF-Induced Neurite Outgrowth in PC12 Cells: Translation Initiation Factor eIF4AI

    Get PDF
    Background: Minocycline, a second-generation tetracycline antibiotic, has potential activity for the treatment of several neurodegenerative and psychiatric disorders. However, its mechanisms of action remain to be determined. Methodology/Principal Findings: We found that minocycline, but not tetracycline, significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a concentration dependent manner. Furthermore, we found that the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP3) receptors and several common signaling molecules (PLCc, PI3K, Akt, p38 MAPK, c-Jun N-terminal kinase (JNK), mammalian target of rapamycin (mTOR), and Ras/Raf/ERK/MAPK pathways) might be involved in the active mechanism of minocycline. Moreover, we found that a marked increase of the eukaryotic translation initiation factor eIF4AI protein by minocycline, but not tetracycline, might be involved in the active mechanism for NGF-induced neurite outgrowth. Conclusions/Significance: These findings suggest that eIF4AI might play a role in the novel mechanism of minocycline. Therefore, agents that can increase eIF4AI protein would be novel therapeutic drugs for certain neurodegenerative an

    Plasma levels of matrix metalloproteinase‐9 (MMP‐9) are associated with cognitive performance in patients with schizophrenia

    Get PDF
    Aim: Matrix metalloproteinase‐9 (MMP‐9) has been shown to modulate synaptic plasticity and may contribute to the pathophysiology of schizophrenia. This study investigated the peripheral levels of MMP‐9 and its association with cognitive functions in patients with schizophrenia to see the possible involvement of MMP‐9 in pathophysiology of schizophrenia, especially in cognitive decline. Methods: We measured the plasma levels of MMP‐9 in 257 healthy controls and 249 patients with schizophrenia, including antipsychotic drug–free patients. We also explored the possible association between plasma MMP‐9 levels and cognitive performance in healthy controls and patients with schizophrenia using the Wechsler Adult Intelligence Scale, Third Edition (WAIS‐ III), the Wechsler Memory Scale‐Revised (WMS‐R), and the Rey Auditory Verbal Learning Test (AVLT). Results: We found that the plasma levels of MMP‐9 were significantly higher in patients with schizophrenia, including antipsychotic drug–free patients, than in healthy controls. We found a significant negative association between plasma MMP‐9 levels and cognitive performance in controls and patients with schizophrenia. Conclusion: Together, these convergent data suggest a possible biological mechanism for schizophrenia, whereby increased MMP‐9 levels are associated with cognitive impairment

    Plasma Levels of Soluble Tumor Necrosis Factor Receptor 2 (sTNFR2) Are Associated with Hippocampal Volume and Cognitive Performance in Patients with Schizophrenia

    Get PDF
    Background: An imbalance in the inflammatory tumor necrosis factor system, including soluble tumor necrosis factor receptor 2 (sTNFR2), may contribute to the pathophysiology of schizophrenia. Methods: We measured the plasma levels of sTNFR2 in 256 healthy controls and 250 patients with schizophrenia including antipsychotic drug-free patients and treatment-resistant patients. We also explored the possible association between plasma sTNFR2 levels and cognitive performance in healthy controls and patients with schizophrenia using the Wechsler Adult Intelligence Scale, Third Edition, the Wechsler Memory Scale-Revised, and the Rey Auditory Verbal Learning Test. An association between plasma sTNFR2 levels and hippocampal volume in controls and patients with schizophrenia was also investigated via MRI. Results: We found that the plasma levels of sTNFR2 were significantly higher in patients with schizophrenia, including both antipsychotic drug-free patients and treatment-resistant patients. We found a significant negative association between plasma sTNFR2 levels and cognitive performance in controls and patients with schizophrenia. Hippocampal volume was also negatively associated with plasma sTNFR2 levels in patients with schizophrenia. Conclusion: Together, these convergent data suggest a possible biological mechanism for schizophrenia, whereby increased sTNFR2 levels are associated with a smaller hippocampal volume and cognitive impairment

    Neurite Outgrowth Mediated by Translation Elongation Factor eEF1A1: A Target for Antiplatelet Agent Cilostazol

    Get PDF
    Cilostazol, a type-3 phosphodiesterase (PDE3) inhibitor, has become widely used as an antiplatelet drug worldwide. A recent second Cilostazol Stroke Prevention Study demonstrated that cilostazol is superior to aspirin for prevention of stroke after an ischemic stroke. However, its precise mechanisms of action remain to be determined. Here, we report that cilostazol, but not the PDE3 inhibitors cilostamide and milrinone, significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Furthermore, specific inhibitors for the endoplasmic reticulum protein inositol 1,4,5-triphosphate (IP3) receptors and several common signaling pathways (PLC-γ, PI3K, Akt, p38 MAPK, and c-Jun N-terminal kinase (JNK), and the Ras/Raf/ERK/MAPK) significantly blocked the potentiation of NGF-induced neurite outgrowth by cilostazol. Using a proteomics analysis, we identified that levels of eukaryotic translation elongation factor eEF1A1 protein were significantly increased by treatment with cilostazol, but not cilostamide, in PC12 cells. Moreover, the potentiating effects of cilostazol on NGF-induced neurite outgrowth were significantly antagonized by treatment with eEF1A1 RNAi, but not the negative control of eEF1A1. These findings suggest that eEF1A1 and several common cellular signaling pathways might play a role in the mechanism of cilostazol-induced neurite outgrowth. Therefore, agents that can increase the eEF1A1 protein may have therapeutic relevance in diverse conditions with altered neurite outgrowth

    Role of Serine Racemase in Behavioral Sensitization in Mice after Repeated Administration of Methamphetamine

    Get PDF
    BACKGROUND: The N-methyl-D-aspartate (NMDA) receptors play a role in behavioral abnormalities observed after administration of the psychostimulant, methamphetamine (METH). Serine racemase (SRR) is an enzyme which synthesizes D-serine, an endogenous co-agonist of NMDA receptors. Using Srr knock-out (KO) mice, we investigated the role of SRR on METH-induced behavioral abnormalities in mice. METHODOLOGY/PRINCIPAL FINDINGS: Evaluations of behavior in acute hyperlocomotion, behavioral sensitization, and conditioned place preference (CPP) were performed. The role of SRR on the release of dopamine (DA) in the nucleus accumbens after administration of METH was examined using in vivo microdialysis technique. Additionally, phosphorylation levels of ERK1/2 proteins in the striatum, frontal cortex and hippocampus were examined using Western blot analysis. Acute hyperlocomotion after a single administration of METH (3 mg/kg) was comparable between wild-type (WT) and Srr-KO mice. However, repeated administration of METH (3 mg/kg/day, once daily for 5 days) resulted in behavioral sensitization in WT, but not Srr-KO mice. Pretreatment with D-serine (900 mg/kg, 30 min prior to each METH treatment) did not affect the development of behavioral sensitization after repeated METH administration. In the CPP paradigm, METH-induced rewarding effects were demonstrable in both WT and Srr-KO mice. In vivo microdialysis study showed that METH (1 mg/kg)-induced DA release in the nucleus accumbens of Srr-KO mice previously treated with METH was significantly lower than that of the WT mice previously treated with METH. Interestingly, a single administration of METH (3 mg/kg) significantly increased the phosphorylation status of ERK1/2 in the striatum of WT, but not Srr-KO mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest first, that SRR plays a role in the development of behavioral sensitization in mice after repeated administration of METH, and second that phosphorylation of ERK1/2 by METH may contribute to the development of this sensitization as seen in WT but not Srr-KO mice

    Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of sigma-1 and IP3 receptors.

    Get PDF
    In addition to both the α1 adrenergic receptor and N-methyl-D-aspartate (NMDA) receptor antagonists, ifenprodil binds to the sigma receptor subtypes 1 and 2. In this study, we examined the effects of ifenprodil on nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Ifenprodil significantly potentiated NGF-induced neurite outgrowth, in a concentration-dependent manner. In contrast, the α1 adrenergic receptor antagonist, prazosin and the NMDA receptor NR2B antagonist, Ro 25-6981 did not alter NGF-induced neurite outgrowth. Potentiation of NGF-induced neurite outgrowth mediated by ifenprodil was significantly antagonized by co-administration of the selective sigma-1 receptor antagonist, NE-100, but not the sigma-2 receptor antagonist, SM-21. Similarly, ifenprodil enhanced NGF-induced neurite outgrowth was again significantly reduced by the inositol 1,4,5-triphosphate (IP(3)) receptor antagonists, xestospongin C and 2-aminoethoxydiphenyl borate (2-APB) treatment. Furthermore, BAPTA-AM, a chelator of intracellular Ca(2+), blocked the effects of ifenprodil on NGF-induced neurite outgrowth, indicating the role of intracellular Ca(2+) in the neurite outgrowth. These findings suggest that activation at sigma-1 receptors and subsequent interaction with IP(3) receptors may mediate the pharmacological effects of ifenprodil on neurite outgrowth

    Representative photographs of MAP-2 and GAP-43 immunocytochemistry in PC12 cells.

    No full text
    <p>In the presence of NGF (2.5 ng/ml), vehicle control or ifenprodil (10 µM) were incubated with PC12 cells. Four days after incubation with test drugs, MAP-2 and GAP-43 immunocytochemistry was performed. Arrowhead shows the cells with neurite outgrowth.</p

    Effects of IP<sub>3</sub> receptor antagonists on NGF-induced neurite outgrowth in PC12 cells.

    No full text
    <p>(A): In the presence of NGF (2.5 ng/ml), vehicle, ifenprodil (10 µM), ifenprodil (10 µM)+xestospongin C (1.0 µM), xestospongin C (1.0 µM) were incubated with PC12 cells. (B): In the presence of NGF (2.5 ng/ml), vehicle, ifenprodil (10 µM), ifenprodil (10 µM)+2-APB (100 µM), or 2-APB (100 µM) were incubated in PC12 cells. Four days after incubation with test drugs, morphometric analysis was performed. The data show the mean ± SEM (n = 6). ***p<0.001 when compared with the ifenprodil (10 µM)-treated group.</p

    Effects of BAPTA-AM on potentiation of NGF-induced neurite outgrowth by ifenprodil.

    No full text
    <p>In the presence of NGF (2.5 ng/ml), vehicle, ifenprodil (10 µM), ifenprodil (10 µM)+BAPTA-AM (5.0 µM), or BAPTA-AM (5.0 µM) were incubated with PC12 cells. Four days after incubation with test drugs, morphometric analysis was performed. The data show the mean ± SEM (n = 6). ***p<0.001 when compared to the control group. <sup>###</sup>p<0.001 when compared to the ifenprodil (10 µM)-treated group.</p
    corecore