74 research outputs found

    Quinazolinobenzodiazepine Derivatives, Novobenzomalvins A–C: Fibronectin Expression Regulators from Aspergillus novofumigatus

    Get PDF
    Three new quinazolinobenzodiazepine derivatives, novobenzomalvins A (1), B (2), and C (3), have been isolated as fibronectin expression regulators from Aspergillus novofumigatus CBS117520. The structures of 1 to 3 were established by spectroscopic and physicochemical analysis, and chemical investigation including the total synthesis of 1. Treatment with novo-benzomalvins A (1), B (2), C (3), and N-methylnovobenzomalvin A (5) increased the expression of fibronectin in normal human neonatal dermal fibroblast cells

    Air-Stable and Reusable Cobalt Phosphide Nanoalloy Catalyst for Selective Hydrogenation of Furfural Derivatives

    Full text link
    While metal phosphides have begun to attract attention as electrocatalysts, they remain underutilized in the field of liquid-phase molecular transformations. Herein, we describe a supported cobalt phosphide nanoalloy (nano-Co₂P) that functions as a highly efficient, reusable heterogeneous catalyst for the selective hydrogenation of furfural derivatives. The carbonyl moieties of several furfural derivatives were selectively hydrogenated to produce the desired products in high yields. In contrast to conventional nonprecious metal catalysts, nano-Co₂P uniquely exhibited air stability, which enabled easy and safe handling and precluded the need for H₂ pretreatment. Infrared and density functional theory studies revealed that the highly efficient hydrogenation is due to the favorable activation of the carbonyl moiety of furfural derivatives through the backdonation to its π* orbital from the Co d-electrons.Hiroya Ishikawa, Min Sheng, Ayako Nakata, Kiyotaka Nakajima, Seiji Yamazoe, Jun Yamasaki, Sho Yamaguchi, Tomoo Mizugaki, and Takato Mitsudome. Air-Stable and Reusable Cobalt Phosphide Nanoalloy Catalyst for Selective Hydrogenation of Furfural Derivatives. ACS Catalysis 2021, 11, 750-757, DOI: 10.1021/acscatal.0c03300.This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Catalysis, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acscatal.0c03300

    Activation of epidermal growth factor receptor signaling by the prostaglandin E2 receptor EP4 pathway during gastric tumorigenesis

    Get PDF
    金沢大学がん進展制御研究所Cyclooxygenase-2 (COX-2) plays an important role in tumorigenesis through prostaglandin E2 (PGE2) biosynthesis. It has been shown by in vitro studies that PGE2 signaling transactivates epidermal growth factor receptor (EGFR) through an intracellular mechanism. However, the mechanisms underlying PGE2-induced EGFR activation in in vivo tumors are still not fully understood. We previously constructed transgenic mice that develop gastric tumors caused by oncogenic activation and PGE2 pathway induction. Importantly, expression of EGFR ligands, epiregulin, amphiregulin, heparin-binding EGF-like growth factor, and betacellulin, as well as a disintegrin and metalloproteinases (ADAMs), ADAM8, ADAM9, ADAM10, and ADAM17 were significantly increased in the mouse gastric tumors in a PGE2 pathway-dependent manner. These ADAMs can activate EGFR by ectodomain shedding of EGFR ligands. Notably, the extensive induction of EGFR ligands and ADAMs was suppressed by inhibition of the PGE2 receptor EP4. Moreover, EP4 signaling induced expression of amphiregulin and epiregulin in activated macrophages, whereas EP4 pathway was required for basal expression of epiregulin in gastric epithelial cells. In contrast, ADAMs were not induced directly by PGE2 in these cells, suggesting indirect mechanism possibly through PGE2-associated inflammatory responses. These results suggest that PGE2 signaling through EP4 activates EGFR in gastric tumors through global induction of EGFR ligands and ADAMs in several cell types either by direct or indirect mechanism. Importantly, gastric tumorigenesis of the transgenic mice was significantly suppressed by combination treatment with EGFR and COX-2 inhibitors. Therefore, it is possible that inhibition of both COX-2/PGE2 and EGFR pathways represents an effective strategy for preventing gastric cancer. © 2011 Japanese Cancer Association

    Prostaglandin E2 signaling and bacterial infection recruit tumor-promoting macrophages to mouse gastric tumors

    Get PDF
    金沢大学がん研究所Background & Aims Helicobacter pylori infection induces an inflammatory response, which can contribute to gastric tumorigenesis. Induction of cyclooxygenase-2 (COX-2) results in production of prostaglandin E2 (PGE2), which mediates inflammation. We investigated the roles of bacterial infection and PGE2 signaling in gastric tumorigenesis in mice. Methods We generated a germfree (GF) colony of K19-Wnt1/C2mE mice (Gan mice); these mice develop gastric cancer. We examined tumor phenotypes, expression of cytokines and chemokines, and recruitment of macrophages. We also investigated PGE2 signaling through the PGE2 receptor subtype 4 (EP4) in Gan mice given specific inhibitors. Results Gan mice raised in a specific pathogen-free facility developed large gastric tumors, whereas gastric tumorigenesis was significantly suppressed in GF-Gan mice; reconstitution of commensal flora or infection with Helicobacter felis induced gastric tumor development in these mice. Macrophage infiltration was significantly suppressed in the stomachs of GF-Gan mice. Gan mice given an EP4 inhibitor had decreased expression of cytokines and chemokines. PGE2 signaling and bacterial infection or stimulation with lipopolysaccharide induced expression of the chemokine C-C motif ligand 2 (CCL2) (which attracts macrophage) in tumor stromal cells or cultured macrophages, respectively. CCL2 inhibition suppressed macrophage infiltration in tumors, and depletion of macrophages from the tumors of Gan mice led to signs of tumor regression. Wnt signaling was suppressed in the tumors of GF-Gan and Gan mice given injections of tumor necrosis factor-α neutralizing antibody. Conclusions Bacterial infection and PGE2 signaling are required for gastric tumorigenesis in mice; they cooperate to up-regulate CCL2, which recruits macrophage to gastric tumors. Macrophage-derived tumor necrosis factor-α promotes Wnt signaling in epithelial cells, which contributes to gastric tumorigenesis. © 2011 AGA Institute

    Forebrain Ptf1a Is Required for Sexual Differentiation of the Brain

    Get PDF
    The mammalian brain undergoes sexual differentiation by gonadal hormones during the perinatal critical period. However, the machinery at earlier stages has not been well studied. We found that Ptf1a is expressed in certain neuroepithelial cells and immature neurons around the third ventricle that give rise to various neurons in several hypothalamic nuclei. We show that conditional Ptf1a-deficient mice (Ptf1a cKO) exhibit abnormalities in sex-biased behaviors and reproductive organs in both sexes. Gonadal hormone administration to gonadectomized animals revealed that the abnormal behavior is caused by disorganized sexual development of the knockout brain. Accordingly, expression of sex-biased genes was severely altered in the cKO hypothalamus. In particular, Kiss1, important for sexual differentiation of the brain, was drastically reduced in the cKO hypothalamus, which may contribute to the observed phenotypes in the Ptf1a cKO. These findings suggest that forebrain Ptf1a is one of the earliest regulators for sexual differentiation of the brain

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    マウス消化器がんモデルを用いた悪性化・転移機構の探索

    Get PDF
    金沢大学がん進展制御研究所消化器がんの死亡原因となる悪性化、転移のメカニズムを解析するために、マウスの腫瘍形成モデルを用いた新しい実験系の構築を試みた。その結果、胃腫瘍、腸腫瘍を発生する遺伝子改変マウス、化学発がんモデルマウスよりの腫瘍細胞の単離、経代培養を行った。また、これらの細胞への遺伝子導入、発現も可能となり、悪性化・転移を示す形質の変化を誘導する新たな因子の同定につながる結果を得た。To analyze the mechanisms of gastrointestinal cancer progression and metastasis which result in many patient death, tumor cells from mouse genetic models were used to establish a new in vitro system. Tumor cells were isolated from genetic and chemical mouse models for gastric and intestinal tumor formation, cultured and passaged. Transfection of expression vector was also possible in these cells. This system can be utilized for the identification of candidate genes which relate to cancer progression and metastasis.研究課題/領域番号:22800025, 研究期間(年度):2010-2011出典:研究課題「マウス消化器がんモデルを用いた悪性化・転移機構の探索」課題番号22800025(KAKEN:科学研究費助成事業データベース(国立情報学研究所)) (https://kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-22800025/22800025seika/)を加工して作
    corecore