553 research outputs found

    Pharmacological Prevention of Peri-, and Post-Procedural Myocardial Injury in Percutaneous Coronary Intervention

    Get PDF
    In recent years, percutaneous coronary intervention (PCI) has become a well-established technique for the treatment of coronary artery disease. PCI improves symptoms in patients with coronary artery disease and it has been increasing safety of procedures. However, peri- and post-procedural myocardial injury, including angiographical slow coronary flow, microvascular embolization, and elevated levels of cardiac enzyme, such as creatine kinase and troponin-T and -I, has also been reported even in elective cases. Furthermore, myocardial reperfusion injury at the beginning of myocardial reperfusion, which causes tissue damage and cardiac dysfunction, may occur in cases of acute coronary syndrome. Because patients with myocardial injury is related to larger myocardial infarction and have a worse long-term prognosis than those without myocardial injury, it is important to prevent myocardial injury during and/or after PCI in patients with coronary artery disease. To date, many studies have demonstrated that adjunctive pharmacological treatment suppresses myocardial injury and increases coronary blood flow during PCI procedures. In this review, we highlight the usefulness of pharmacological treatment in combination with PCI in attenuating myocardial injury in patients with coronary artery disease

    Glucose or Sucrose Intakes and Plasma Levels of Essential and Nonessential Amino Acids

    Get PDF
    It is not known whether the administration of glucose or sucrose influences plasma levels of amino acids. We want to know whether plasma levels of amino acids and if the administration of glucose or sucrose are different in young and old men and are influenced by the administration of glucose or sucrose. We found that the levels of most amino acids in plasma are lower in old men than young men. When sucrose was administered to old men, levels of total amino acids decreased significantly in old men. In both old and young men plasma levels of total nonessential amino acids significantly decreased at 120 min. after the administration of glucose but not sucrose. On the other hand, total essential and branched amino acids levels decreased significantly after the administration of both glucose and sucrose in young and old men. From these results, responses to the administration of glucose were different from the response to sucrose between young and old men. Also glucose was more effective in decreasing plasma levels of various amino acids. These results seem to suggest that glucose was more effective in stimulating insulin release and young men were more responsive to sugar than old men in stimulating insulin release

    Spearmint Extract Containing Rosmarinic Acid Suppresses Amyloid Fibril Formation of Proteins Associated with Dementia

    Get PDF
    Neurological dementias such as Alzheimer’s disease and Lewy body dementia are thought to be caused in part by the formation and deposition of characteristic insoluble fibrils of polypeptides such as amyloid beta (Aβ), Tau, and/or α-synuclein (αSyn). In this context, it is critical to suppress and remove such aggregates in order to prevent and/or delay the progression of dementia in these ailments. In this report, we investigated the effects of spearmint extract (SME) and rosmarinic acid (RA; the major component of SME) on the amyloid fibril formation reactions of αSyn, Aβ, and Tau proteins in vitro. SME or RA was added to soluble samples of each protein and the formation of fibrils was monitored by thioflavin T (ThioT) binding assays and transmission electron microscopy (TEM). We also evaluated whether preformed amyloid fibrils could be dissolved by the addition of RA. Our results reveal for the first time that SME and RA both suppress amyloid fibril formation, and that RA could disassemble preformed fibrils of αSyn, Aβ, and Tau into non-toxic species. Our results suggest that SME and RA may potentially suppress amyloid fibrils implicated in the progression of Alzheimer’s disease and Lewy body dementia in vivo, as well

    High glucose level and angiotensin II type 1 receptor stimulation synergistically amplify oxidative stress in renal mesangial cells

    Get PDF
    Abstract Oxidative stress in renal mesangial cell causes diabetic glomerular changes. High glucose levels and angiotensin II (Ang II) are known to stimulate superoxide production in renal mesangial cells. However, it has been unclear whether Ang II stimulation and pre-conditioning with high glucose affects the same pathway of superoxide production in renal mesangial cells or not. In this study, we examined the levels of oxidative stress under Ang II stimulation in renal mesangial cells preincubated for six hours at various glucose levels. Intracellular levels of reactive oxidative species (ROS) were measured using dihydroethidium or 5′,6′-chloromethyl- 2′,7′ dichlorodihydro-fluorescein diacetate, which facilitates the detection of intracellular ROS under real-time fluorescent microscope. Ang II-induced elevated intracellular ROS levels were detected only when the cells were pre-incubated with high levels of glucose (13.5 mM, 27.8 mM), but was not detected under normal glucose condition (5.5 mM). Production of Ang II-induced intracellular ROS was higher under pre-treatment with 27.8 mM glucose compared to pretreatment with 13.5 mM glucose level. This ROS production in mesangial cells was induced within several minutes of the initiation of Ang II stimulation under high glucose levels. The production of intracellular ROS was significantly reduced in the presence of angiotensin II type1-receptor (AT1R) antagonist, whereas it was augmented in the presence of angiotensin II type2-receptor antagonist. In conclusion, Ang II-induced oxidative stress was augmented by high glucose levels and ROS levels were further alleviated in the presence of AT1R antagonists

    Photoelectric Dye, NK-5962, as a Potential Drug for Preventing Retinal Neurons from Apoptosis: Pharmacokinetic Studies Based on Review of the Evidence

    Get PDF
    NK-5962 is a key component of photoelectric dye-based retinal prosthesis (OUReP). In testing the safety and efficacy, NK-5962 was safe in all tests for the biological evaluation of medical devices (ISO 10993) and effective in preventing retinal cells from death even under dark conditions. The long-term implantation of the photoelectric dye-coupled polyethylene film in the subretinal space of hereditary retinal dystrophic (RCS) rats prevented neurons from apoptosis in the adjacent retinal tissue. The intravitreous injection of NK-5962 in the eyes of RCS rats, indeed, reduced the number of apoptotic cells in the retinal outer nuclear layer irrespective of light or dark conditions. In this study, we reviewed the in vitro and in vivo evidence of neuroprotective effect of NK-5962 and designed pharmacokinetic experiments. The in vitro IC50 of 1.7 μM, based on the protective effect on retinal cells in culture, could explain the in vivo EC50 of 3 μM that is calculated from concentrations of intravitreous injection to prevent retinal neurons from apoptosis. Pharmacokinetics of NK-5962 showed that intravenous administration, but not oral administration, led to the effective concentration in the eye of rats. NK-5962 would be a candidate drug for delaying the deterioration of retinal dystrophy, such as retinitis pigmentosa
    corecore