21 research outputs found

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    DECIGO and DECIGO pathfinder

    Full text link

    Gravity changes observed between 2004 and 2009 near the Tokai slow-slip area and prospects for detecting fluid flow during future slow-slip events

    Get PDF
    Slow-slip events (SSEs) have been observed in many plate-boundary zones along the circum-Pacific seismic belt. Previous studies have revealed that high-pressure fluids supplied from the subducted oceanic plate can generate SSEs. However, the behavior of these fluids during an SSE has not been fully elucidated. This paper discusses possible fluid migration along the plate boundary on the basis of spatiotemporal gravity changes observed by absolute and relative gravimeters during a long-term SSE in the Tokai district, Japan. Relative-gravity data are sometimes unreliable because of limited observation accuracies and possible noise produced by groundwater. Nevertheless, the observed gravity changes show a systematic pattern of spatial changes over the slow-slip area. This pattern can be explained by a poroelastic model assuming fluid migration along the plate interface, for which an inversion indicates a permeability of about 10-15 m2. This lies within the range of permeability values inferred by other studies in slow-slip areas. Long-term SSEs have occurred repeatedly in the Tokai district. If the permeability remains greater than 10-15 m2 during a future SSE, it will be possible to detect fluid migration by improving the observation accuracy to the 1-μGal level and accurately evaluating groundwater-related noise

    Acceleration of Regeneration of Mucosa in Small Intestine Damaged by Ionizing Radiation using Anabolic Steroids.

    No full text
    Damage to intestine is a serious problem after accidental radiation. To examine substances to ameliorate damage by post-irradiation administration, we focused on the regeneration process following irradiation to intestine. Using experimental systems to examine the regeneration, effects of clinically used sex hormones were compared. An anabolic steroid, nandrolone (19-nortestosterone), stimulated proliferation in IEC-6 epithelial cells. Single injection of 19-nortestosterone ester with prolonged action to mice 24 h after abdominal irradiation at lethal dose of 15.7Gy showed significant life-saving effect. Regeneration indicators as microcolonies of BrdU-incorporated cells at Day 5 and c-myb mRNA expression levels at Day 4 were enhanced by 19-nortestosterone administration. In contrast, high concentration of estradiol inhibited growth of IEC-6. Introduction of estradiol ester to abdominally irradiated mice decreased levels of regeneration indicators and survival rate. These results suggest the effectiveness of anabolic steroid as well as the importance of manipulation of steroid receptors in the recovery of mucosa damaged by radiation
    corecore