690 research outputs found
Evidence for transcription attenuation rendering cryptic a sigmaS- dependent promoter of the osmotically regulated proU operon of Salmonella typhimurium
The osmotically regulated proU locus in Escherichia coli has two promoters, P1 and P2, that are recognized, respectively, by the σ S- and σ 70-bearing RNA polymerase holoenzymes. However, the equivalent of the P1 promoter does not appear to exist in Salmonella typhimurium. We demonstrate in this study that wild-type S. typhimurium has a cryptic P1 promoter that is recognized by σ S RNA polymerase in vitro and that a 22-bp deletion from +63 to +84 (relative to the start site of transcription) confers σ S-dependent in vivo expression of a reporter gene fusion to P1. Primer extension analysis of RNA isolated from cells carrying the wild-type and mutant S. typhimurium proU constructs indicated that a primer which hybridizes proximal to +60 is able to detect P1-initiated transcripts from both constructs but a primer which hybridizes distal to +85 is able to do so only from the latter. Our results suggest that the σ S-controlled proU P1 promoter in S. typhimurium may be rendered cryptic because of factor-dependent transcription attenuation within a short distance downstream of the promoter start site
Color Changes in Electronic Endoscopic Images Caused by Image Compression
In recent years, recording of color still images into magneto–optical video disks has been
increasingly used as a method for recording electronic endoscopic images. In this case,
image compression is often used to reduce the volume and cost of recording media and
also to minimize the time required for image recording and playback. With this in mind,
we recorded 8 images into a magneto-optical video disk in 4 image compression modes
(no compression, weak compression, moderate compression, and strong compression)
using the Joint Photographic Image Coding Experts Group (JPEG) system, which is a
widely used and representative method for compressing color still images, in order to
determine the relationship between the degree of image compression and the color
information in electronic endoscopic images. The acquired images were transferred to an
image processor using an offline system. A total of 10 regions of interest (ROls) were
selected, and red (R), green (G), and blue (B) images were obtained using different
compression modes. From histograms generated for these images, mean densities of R,
G, and B in each ROI were measured and analyzed. The results revealed that color
changes were greater for B, which had the lowest density, than for R or G as the degree
of compression was increased
Effects of H-NS and potassium glutamate on σ<SUP>S</SUP>- and σ<SUP>70</SUP>-directed transcription in vitro from osmotically regulated P1 and P2 promoters of proU in Escherichia coli
We have used supercoiled DNA templates in this study to demonstrate that transcription in vitro from the P1 and P2 promoters of the osmoresponsive proU operon of Escherichia coli is preferentially mediated by the σs and σ70-bearing RNA polymerase holoenzymes, respectively. Addition of potassium glutamate resulted in the activation of transcription from both P1 and P2 and also led to a pronounced enhancement of σs selectivity at the P1 promoter. Transcription from P2, and to a lesser extent from P1, was inhibited by the nucleoid protein H-NS but only in the absence of potassium glutamate. This study validates the existence of dual promoters with dual specificities for proU transcription. Our results also support the proposals that potassium, which is known to accumulate in cells grown at high osmolarity, is at least partially responsible for effecting the in vivo induction of proU transcription and that it does so through two mechanisms, directly by the activation of RNA polymerase and indirectly by the relief of repression imposed by H-NS
The Optimal Exponent Base for emPAI Is 6.5
Exponentially Modified Protein Abundance Index (emPAI) is an established method of estimating protein abundances from peptide counts in a single LC-MS/MS experiment. EmPAI is defined as 10PAI minus one, where PAI (Protein Abundance Index) denotes the ratio of observed to observable peptides. EmPAI was first proposed by Ishihama et al [1] who found that PAI is approximately proportional to the logarithm of absolute protein concentration. I define emPAI65 = 6.5PAI-1 and show that it performs significantly better than emPAI, while it is equally easy to compute. The higher accuracy of emPAI65 is demonstrated by analyzing three data sets, including the one used in the original study [1]. I conclude that emPAI65 ought to be used instead of the original emPAI for protein quantitation
A systematic review of contamination (aerosol, splatter and droplet generation) associated with oral surgery and its relevance to COVID-19
IntroductionThe current COVID-19 pandemic caused by the SARS-CoV-2 virus has impacted the delivery of dental care globally and has led to re-evaluation of infection control standards. However, lack of clarity around what is known and unknown regarding droplet and aerosol generation in dentistry (including oral surgery and extractions), and their relative risk to patients and the dental team, necessitates a review of evidence relating to specific dental procedures. This review is part of a wider body of research exploring the evidence on bioaerosols in dentistry and involves detailed consideration of the risk of contamination in relation to oral surgery.MethodsA comprehensive search of Medline (OVID), Embase (OVID), Cochrane Central Register of Controlled Trials, Scopus, Web of Science, LILACS and ClinicalTrials.Gov was conducted using key terms and MeSH (Medical Subject Headings) words relating to the review questions. Methodological quality including sensitivity was assessed using a schema developed to measure quality aspects of studies using a traffic light system to allow inter- and intra-study overview and comparison. A narrative synthesis was conducted for assessment of the included studies and for the synthesis of results.ResultsEleven studies on oral surgery (including extractions) were included in the review. They explored microbiological (bacterial and fungal) and blood (visible and/or imperceptible) contamination at the person level (patients, operators and assistants) and/or at a wider environmental level, using settle plates, chemiluminescence reagents or air samplers; all within 1 m of the surgical site. Studies were of generally low to medium quality and highlighted an overall risk of contaminated aerosol, droplet and splatter generation during oral surgery procedures, most notably during removal of impacted teeth using rotatory handpieces. Risk of contamination and spread was increased by factors, including proximity to the operatory site, longer duration of treatment, higher procedural complexity, non-use of an extraoral evacuator and areas involving more frequent contact during treatment.ConclusionA risk of contamination (microbiological, visible and imperceptible blood) to patients, dental team members and the clinical environment is present during oral surgery procedures, including routine extractions. However, the extent of contamination has not been explored fully in relation to time and distance. Variability across studies with regards to the analysis methods used and outcome measures makes it difficult to draw robust conclusions. Further studies with improved methodologies, including higher test sensitivity and consideration of viruses, are required to validate these findings
Novel Roles of cAMP Receptor Protein (CRP) in Regulation of Transport and Metabolism of Carbon Sources
CRP (cAMP receptor protein), the global regulator of genes for carbon source utilization in the absence of glucose, is the best-studied prokaryotic transcription factor. A total of 195 target promoters on the Escherichia coli genome have been proposed to be under the control of cAMP-bound CRP. Using the newly developed Genomic SELEX screening system of transcription factor-binding sequences, however, we have identified a total of at least 254 CRP-binding sites. Based on their location on the E. coli genome, we predict a total of at least 183 novel regulation target operons, altogether with the 195 hitherto known targets, reaching to the minimum of 378 promoters as the regulation targets of cAMP-CRP. All the promoters selected from the newly identified targets and examined by using the lacZ reporter assay were found to be under the control of CRP, indicating that the Genomic SELEX screening allowed to identify the CRP targets with high accuracy. Based on the functions of novel target genes, we conclude that CRP plays a key regulatory role in the whole processes from the selective transport of carbon sources, the glycolysis-gluconeogenesis switching to the metabolisms downstream of glycolysis, including tricarboxylic acid (TCA) cycle, pyruvate dehydrogenase (PDH) pathway and aerobic respiration. One unique regulation mode is that a single and the same CRP molecule bound within intergenic regions often regulates both of divergently transcribed operons
Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock.
Fustin, J.-M., Kojima, R., Itoh, K., Chang, H.-Y., Shiqi, Y., Zhuang, B., . . . Okamura, H. (2018). Two Ck1δ transcripts regulated by m6A methylation code for two antagonistic kinases in the control of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 115(23), 5980-5985. doi:10.1073/pnas.172137111
Phosphorylation of the ribosomal protein RPL12/uL11 affects translation during mitosis
Emerging evidence indicates that heterogeneity in ribosome composition can give rise to specialized functions. Until now, research mainly focused on differences in core ribosomal proteins and associated factors. The effect of posttranslational modifications has not been studied systematically. Analyzing ribosome heterogeneity is challenging because individual proteins can be part of different subcomplexes (40S, 60S, 80S, and polysomes). Here we develop polysome proteome profiling to obtain unbiased proteomic maps across ribosomal subcomplexes. Our method combines extensive fractionation by sucrose gradient centrifugation with quantitative mass spectrometry. The high resolution of the profiles allows us to assign proteins to specific subcomplexes. Phosphoproteomics on the fractions reveals that phosphorylation of serine 38 in RPL12/uL11, a known mitotic CDK1 substrate, is strongly depleted in polysomes. Follow-up experiments confirm that RPL12/uL11 phosphorylation regulates the translation of specific subsets of mRNAs during mitosis. Together, our results show that posttranslational modification of ribosomal proteins can regulate translation
An RxLR effector from phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus
The plant immune system is activated following the perception of exposed, essential and invariant microbial molecules that are recognised as non-self. A major component of plant immunity is the transcriptional induction of genes involved in a wide array of defence responses. In turn, adapted pathogens deliver effector proteins that act either inside or outside plant cells to manipulate host processes, often through their direct action on plant protein targets. To date, few effectors have been shown to directly manipulate transcriptional regulators of plant defence. Moreover, little is known generally about the modes of action of effectors from filamentous (fungal and oomycete) plant pathogens. We describe an effector, called Pi03192, from the late blight pathogen Phytophthora infestans, which interacts with a pair of host transcription factors at the endoplasmic reticulum (ER) inside plant cells. We show that these transcription factors are released from the ER to enter the nucleus, following pathogen perception, and are important in restricting disease. Pi03192 prevents the plant transcription factors from accumulating in the host nucleus, revealing a novel means of enhancing host susceptibility
Discrimination of Dormant and Active Hematopoietic Stem Cells by G<sub>0</sub> Marker Reveals Dormancy Regulation by Cytoplasmic Calcium
Quiescent hematopoietic stem cells (HSCs) are typically dormant, and only a few quiescent HSCs are active. The relationship between “dormant” and “active” HSCs remains unresolved. Here we generate a G0 marker (G0M) mouse line that visualizes quiescent cells and identify a small population of active HSCs (G0Mlow), which are distinct from dormant HSCs (G0Mhigh), within the conventional quiescent HSC fraction. Single-cell RNA-seq analyses show that the gene expression profiles of these populations are nearly identical but differ in their Cdk4/6 activity. Furthermore, high-throughput small-molecule screening reveals that high concentrations of cytoplasmic calcium ([Ca2+]c) are linked to dormancy of HSCs. These findings indicate that G0M separates dormant and active adult HSCs, which are regulated by Cdk4/6 and [Ca2+]c. This G0M mouse line represents a useful resource for investigating physiologically important stem cell subpopulations
- …