2,185 research outputs found

    Dark filaments observed at 8.3mm and 3.1mm wavelength

    Get PDF
    Mapping of the sun was made at 3.1mm (98 GHz) and 8.3mm (36 GHz) wavelengths with a 45m dish radio telescope at the Nobeyama Cosmic Radio Observatory. The depressions associated with large H alpha filaments are derived to be -0.2 at 8.3mm and -0.05 at 3.1mm, which are darker than the values inferred by Raoult et al. (1979

    Phase diagram of the one dimensional Hubbard-Holstein Model at 1/2 and 1/4 filling

    Get PDF
    The Hubbard-Holstein model is one of the simplest to incorporate both electron-electron and electron-phonon interactions. In one dimension at half filling the Holstein electron-phonon coupling promotes onsite pairs of electrons and a Peierls charge density wave while the Hubbard onsite Coulomb repulsion U promotes antiferromagnetic correlations and a Mott insulating state. Recent numerical studies have found a possible third intermediate phase between Peierls and Mott states. From direct calculations of charge and spin susceptibilities, we show that (i) As the electron-phonon coupling is increased, first a spin gap opens, followed by the Peierls transition. Between these two transitions the metallic intermediate phase has a spin gap, no charge gap, and properties similar to the negative-U Hubbard model. (ii) The transitions between Mott/intermediate and intermediate/Peierls states are of the Kosterlitz-Thouless form. (iii) For larger U the two transitions merge at a tritical point into a single first order Mott/Peierls transition. In addition we show that an intermediate phase also occurs in the quarter-filled model.Comment: 10 pages, 10 eps figure

    Nodal Superconducting Order Parameter and Thermodynamic Phase Diagram of (TMTSF)2ClO4

    Get PDF
    The organic materials (TMTSF)2X are unique unconventional superconductors with archetypal quasi-one-dimensional (Q1D) electronic structures. Here, based on our comprehensive field-angle-resolved calorimetry of (TMTSF)2ClO4, we succeeded in mapping the nodal gap structure for the first time in Q1D systems, by discriminating between the Fermi wavevectors and Fermi velocities. In addition, the thermodynamic phase diagrams of (TMTSF)2ClO4 for all principal field directions are obtained. These findings, providing strong evidence of nodal spin-singlet superconductivity, serves as solid bases for further elucidation of anomalous superconducting phenomena in (TMTSF)2X.Comment: 7 pages, 7 figures, including Supplemental Information added at the end of the manuscrip
    corecore