29 research outputs found
Exercise training enhances in vivo clearance of endotoxin and attenuates inflammatory responses by potentiating Kupffer cell phagocytosis
The failure of Kupffer cells (KCs) to remove endotoxin is an important factor in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). In this study, the effects of exercise training on KC function were studied in terms of in vivo endotoxin clearance and inflammatory responses. Mice were allocated into rest and exercise groups. KC bead phagocytic capacity and plasma steroid hormone levels were determined following exercise training. Endotoxin and inflammatory cytokine levels in plasma were determined over time following endotoxin injection. KC bead phagocytic capacity was potentiated and clearance of exogenously-injected endotoxin was increased in the exercise group. Inflammatory cytokine (TNF-α and IL-6) levels were lower in the exercise group. We found that only DHEA was increased in the plasma of the exercise group. In an in vitro experiment, the addition of DHEA to RAW264.7 cells increased bead phagocytic capacity and attenuated endotoxin-induced inflammatory responses. These results suggest that exercise training modulates in vivo endotoxin clearance and inflammatory responses in association with increased DHEA production. These exercise-induced changes in KC capacity may contribute to a slowing of disease progression in NAFLD patients
Deletion of both p62 and Nrf2 spontaneously results in the development of nonalcoholic steatohepatitis
Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62:Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH
Nuclear factor (erythroid derived 2)-like 2 activation increases exercise endurance capacity via redox modulation in skeletal muscles
Sulforaphane (SFN) plays an important role in preventing oxidative stress by activating the nuclear factor (erythroid derived 2)-like 2 (Nrf2) signalling pathway. SFN may improve exercise endurance capacity by counteracting oxidative stress-induced damage during exercise. We assessed running ability based on an exhaustive treadmill test (progressive-continuous all-out) and examined the expression of markers for oxidative stress and muscle damage. Twelve- to 13-week-old Male wild-type mice (Nrf2+/+) and Nrf2-null mice (Nrf2−/−) on C57BL/6J background were intraperitoneally injected with SFN or vehicle prior to the test. The running distance of SFN-injected Nrf2+/+ mice was significantly greater compared with that of uninjected mice. Enhanced running capacity was accompanied by upregulation of Nrf2 signalling and downstream genes. Marker of oxidative stress in SFN-injected Nrf2+/+ mice were lower than those in uninjected mice following the test. SFN produced greater protection against muscle damage during exhaustive exercise conditions in Nrf2+/+ mice than in Nrf2−/− mice. SFN-induced Nrf2 upregulation, and its antioxidative effects, might play critical roles in attenuating muscle fatigue via reduction of oxidative stress caused by exhaustive exercise. This in turn leads to enhanced exercise endurance capacity. These results provide new insights into SFN-induced upregulation of Nrf2 and its role in improving exercise performance
Long-term outcomes of proton beam therapy in patients with previously untreated hepatocellular carcinoma
Long-term efficacy of proton beam therapy (PBT) remains unclear for patients with previously untreated hepatocellular carcinoma (HCC). We aimed to study the long-term outcomes of PBT according to Barcelona Clinic Liver Cancer (BCLC) staging classifications in patients with previously untreated HCC. The major eligibility criteria of this observational study were an Eastern Cooperative Oncology Group performance status (PS) 0–2, Child–Pugh grade A or B, previously untreated HCC covered within an irradiation field, and no massive ascites. A total of 66.0–77.0 GyE was administered in 10–35 fractions. Local tumor control (LTC), defined as no progression in the irradiated field, progression-free survival (PFS), and overall survival (OS) were assessed according to BCLC staging. From 2002 to 2009 at our institution, 129 patients were eligible. The 5-year LTC, PFS, and OS rates were 94%, 28%, and 69% for patients with 0/A stage disease (n = 9/21), 87%, 23%, and 66% for patients with B stage disease (n = 34), and 75%, 9%, and 25% for patients with C stage disease (n = 65), respectively. The 5-year LTC and OS rates of 15 patients with tumor thrombi in major vessels were 90% and 34%, respectively. Multivariate analyses revealed that PS (0 versus 1–2) was a significant prognostic factor for OS. No grade 3 or higher adverse effects were observed. PBT showed favorable long-term efficacies with mild adverse effects in BCLC stage 0 to C, and can be an alternative treatment for localized HCC especially when accompanied with tumor thrombi. This study was registered with UMIN Clinical Trials Registry (UMIN000025342)
Hepatolithiasis in a 52-year-old native liver survivor with postoperative biliary atresia
Hepatolithiasis is well known to be a late complication after biliary reconstruction. However, there were few reports regarding hepatolithiasis in late complications of long-term, native liver survivors in postoperative patients of biliary atresia. Here, we present a 52-year-old woman who underwent Kasai portoenterostomy for biliary atresia type Ⅲ at the age of 110 days. She was asymptomatic for over 30 years, and birthed three normal babies. Then she suffered from repeated cholangitis due to multiple hepatolithiasis since age 50. A lithotripsy via Roux-en-Y limb was performed but failed due to hepatic hilum strictures. Finally, she underwent living donor liver transplantation. Endoscopic lithotripsy and hepatectomy for hepatolithiasis often fail in biliary atresia patients due to unresolvable intrahepatic or hilar bile duct stenosis and liver dysfunction. Therefore, we consider that liver transplantation is curative and strongly recommended for symptomatic hepatolithiasis as a late complication after biliary atresia surgery
Wax Ester Production from n-Alkanes by Acinetobacter sp. Strain M-1: Ultrastructure of Cellular Inclusions and Role of Acyl Coenzyme A Reductase
Acinetobacter sp. strain M-1 accumulated a large amount of wax esters from an n-alkane under nitrogen-limiting conditions. Under the optimized conditions with n-hexadecane as the substrate, the amount of hexadecyl hexadecanoate in the cells reached 0.17 g/g of cells (dry weight). Electron microscopic analysis revealed that multilayered disk-shaped intracellular inclusions were formed concomitant with wax ester formation. The contribution of acyl-CoA reductase to wax ester synthesis was evaluated by gene disruption analysis