23 research outputs found

    Inductive asymmetric cell division: The WRM leads the way

    Get PDF
    C. elegans, with its invariant cell lineage, provides a powerful model system in which to study signaling-dependent asymmetric cell division. The C. elegans β-catenin-related protein, WRM-1, specifies endoderm at the 4-cell stage during the first cell signaling-induced asymmetric cell division of embryogenesis. During this interaction, Wnt signaling and the cell cycle regulator CDK-1 act together to induce the asymmetric cortical release of WRM-1 at prophase of the EMS cell cycle. Genetic studies suggest that release of WRM-1 unmasks a cortical site that drives EMS spindle rotation onto the polarized axis of the cell, simultaneously making WRM-1 available for nuclear translocation, and downstream signaling to specify endoderm. These studies suggest a general paradigm for how cortical factors like WRM-1 can function at the cell cortex to mask potentially confounding polarity cues, and when released with appropriate cell cycle timing, can also function downstream to define cell fate

    Wnt and CDK-1 regulate cortical release of WRM-1/beta-catenin to control cell division orientation in early Caenorhabditis elegans embryos

    Get PDF
    In early Caenorhabditis elegans embryos, the Wingless/int (Wnt)- and Src-signaling pathways function in parallel to induce both the division orientation of the endomesoderm (EMS) blastomere and the endoderm fate of the posterior EMS daughter cell, called E. Here, we show that, in addition to its role in endoderm specification, the beta-catenin-related protein Worm armadillo 1 (WRM-1) also plays a role in controlling EMS division orientation. WRM-1 localizes to the cortex of cells in both embryos and larvae and is released from the cortex in a Wnt-responsive manner. We show that WRM-1 cortical release is disrupted in a hypomorphic cyclin-dependent protein kinase 1 (cdk-1) mutant and that WRM-1 lacking potential CDK-1 phosphoacceptor sites is retained at the cortex. In both cases, cortical WRM-1 interferes with EMS spindle rotation without affecting endoderm specification. Finally, we show that removal of WRM-1 from the cortex can restore WT division orientation, even when both Wnt- and Src-signaling pathways are compromised. Our findings are consistent with a model in which Wnt signaling and CDK-1 modify WRM-1 in a temporal and spatial manner to unmask an intrinsic polarity cue required for proper orientation of the EMS cell division axis

    A co-CRISPR strategy for efficient genome editing in Caenorhabditis elegans

    Get PDF
    Genome editing based on CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease (Cas9) has been successfully applied in dozens of diverse plant and animal species, including the nematode Caenorhabditis elegans. The rapid life cycle and easy access to the ovary by micro-injection make C. elegans an ideal organism both for applying CRISPR-Cas9 genome editing technology and for optimizing genome-editing protocols. Here we report efficient and straightforward CRISPR-Cas9 genome-editing methods for C. elegans, including a Co-CRISPR strategy that facilitates detection of genome-editing events. We describe methods for detecting homologous recombination (HR) events, including direct screening methods as well as new selection/counterselection strategies. Our findings reveal a surprisingly high frequency of HR-mediated gene conversion, making it possible to rapidly and precisely edit the C. elegans genome both with and without the use of co-inserted marker genes

    The minibrain kinase homolog, mbk-2, is required for spindle positioning and asymmetric cell division in early C. elegans embryos

    Get PDF
    AbstractIn the newly fertilized Caenorhabditis elegans zygote, cytoplasmic determinants become localized asymmetrically along the anterior–posterior (A–P) axis of the embryo. The mitotic apparatus then orients so as to cleave the embryo into anterior and posterior blastomeres that differ in both size and developmental potential. Here we describe a role for MBK-2, a member of the Dyrk family of protein kinases, in asymmetric cell division in C. elegans. In mbk-2 mutants, the initial mitotic spindle is misplaced and cytoplasmic factors, including the germline-specific protein PIE-1, are mislocalized. Our findings support a model in which MBK-2 down-regulates the katanin-related protein MEI-1 to control spindle positioning and acts through distinct, as yet unknown factors, to control the localization of cytoplasmic determinants. These findings in conjunction with work from Schizosaccharomyces pombe indicate a possible conserved role for Dyrk family kinases in the regulation of spindle placement during cell division

    Infection of Caenorhabditis elegans with Vesicular Stomatitis Virus via Microinjection

    No full text
    Over the past 15 years, the free-living nematode, Caenorhabditis elegans has become an important model system for exploring eukaryotic innate immunity to bacterial and fungal pathogens. More recently, infection models using either natural or non-natural nematode viruses have also been established in C. elegans. These models offer new opportunities to use the nematode to understand eukaryotic antiviral defense mechanisms. Here we report protocols for the infection of C. elegans with a non-natural viral pathogen, vesicular stomatitis virus (VSV) through microinjection. We also describe how recombinant VSV strains encoding fluorescent or luciferase reporter genes can be used in conjunction with simple fluorescence-, survival-, and luminescence-based assays to identify host genetic backgrounds with differential susceptibilities to virus infection

    Divide and differentiate: CDK/Cyclins and the art of development

    No full text
    The elegant choreography of metazoan development demands exquisite regulation of cell-division timing, orientation, and asymmetry. In this review, we discuss studies in Drosophila and C. elegans that reveal how the cell cycle machinery, comprised of cyclin-dependent kinase (CDK) and cyclins functions as a master regulator of development. We provide examples of how CDK/cyclins: (1) regulate the asymmetric localization and timely destruction of cell fate determinants; (2) couple signaling to the control of cell division orientation; and (3) maintain mitotic zones for stem cell proliferation. These studies illustrate how the core cell cycle machinery should be viewed not merely as an engine that drives the cell cycle forward, but rather as a dynamic regulator that integrates the cell-division cycle with cellular differentiation, ensuring the coherent and faithful execution of developmental programs

    The nuclear Argonaute HRDE-1 directs target gene re-localization and shuttles to nuage to promote small RNA-mediated inherited silencing

    No full text
    Summary: Argonaute/small RNA pathways and heterochromatin work together to propagate transgenerational gene silencing, but the mechanisms behind their interaction are not well understood. Here, we show that induction of heterochromatin silencing in C. elegans by RNAi or by artificially tethering pathway components to target RNA causes co-localization of target alleles in pachytene nuclei. Tethering the nuclear Argonaute WAGO-9/HRDE-1 induces heterochromatin formation and independently induces small RNA amplification. Consistent with this finding, HRDE-1, while predominantly nuclear, also localizes to peri-nuclear nuage domains, where amplification is thought to occur. Tethering a heterochromatin-silencing factor, NRDE-2, induces heterochromatin formation, which subsequently causes de novo synthesis of HRDE-1 guide RNAs. HRDE-1 then acts to further amplify small RNAs that load on downstream Argonautes. These findings suggest that HRDE-1 plays a dual role, acting upstream to initiate heterochromatin silencing and downstream to stimulate a new cycle of small RNA amplification, thus establishing a self-enforcing mechanism that propagates gene silencing to future generations

    The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression

    No full text
    Organisms can develop adaptive sequence-specific immunity by reexpressing pathogen-specific small RNAs that guide gene silencing. For example, the C. elegans PIWI-Argonaute/piwi-interacting RNA (piRNA) pathway recruits RNA-dependent RNA polymerase (RdRP) to foreign sequences to amplify a transgenerational small-RNA-induced epigenetic silencing signal (termed RNAe). Here, we provide evidence that, in addition to an adaptive memory of silenced sequences, C. elegans can also develop an opposing adaptive memory of expressed/self-mRNAs. We refer to this mechanism, which can prevent or reverse RNAe, as RNA-induced epigenetic gene activation (RNAa). We show that CSR-1, which engages RdRP-amplified small RNAs complementary to germline-expressed mRNAs, is required for RNAa. We show that a transgene with RNAa activity also exhibits accumulation of cognate CSR-1 small RNAs. Our findings suggest that C. elegans adaptively acquires and maintains a transgenerational CSR-1 memory that recognizes and protects self-mRNAs, allowing piRNAs to recognize foreign sequences innately, without the need for prior exposure

    Wnt signaling drives WRM-1/ ␤-catenin asymmetries in early C. elegans embryos

    No full text
    ␤-Catenin regulates cell adhesion and cellular differentiation during development, and misregulation of ␤-catenin contributes to numerous forms of cancer in humans. Here we describe Caenorhabditis elegans conditional alleles of mom-2/Wnt, mom-4/Tak1, and wrm-1/␤-catenin. We use these reagents to examine the regulation of WRM-1/␤-catenin during a Wnt-signaling-induced asymmetric cell division. While WRM-1 protein initially accumulates in the nuclei of all cells, signaling promotes the retention of WRM-1 in nuclei of responding cells. We show that both PRY-1/Axin and the nuclear exportin homolog IMB-4/CRM-1 antagonize signaling. These findings reveal how Wnt signals direct the asymmetric localization of ␤-catenin during polarized cell division. Supplemental material is available at http://www.genesdev.org. Wnt proteins are secreted signaling molecules important in numerous developmental events in animals Caenorhabditis elegans provides an ideal system for analyzing the role of Wnt signaling in polarized cell divisions. In addition to powerful genetic tools available in this animal, signaling events can be analyzed at the level of the individual cells involved in signaling. For example, at the four-cell stage of embryogenesis, a ventral cell called EMS receives a signal from the posterior-most cell, P2. Signaling from P2 orients the EMS division axis onto the anterior-posterior (a/p) axis of the embryo (Bowerman and Shelton 1999) and induces an unequal division that gives rise to one anterior mesodermal precursor and one posterior endodermal precursor P2/EMS signaling involves multiple inputs, including at least two parallel cell-surface receptor-mediated pathways: the Wnt-Frizzled pathway Despite this progress, many gaps remain in our understanding of how P2/EMS signaling directs EMS spindle orientation and how this signaling leads to unequal POP-1 nuclear levels in the daughters of EMS. In particular, although the WRM-1/␤-catenin protein appears to represent a nexus for coordinating signals from the membrane and facilitating their transduction to the nucleus, little is known about whether and how WRM-1 activity or localization is regulated during signaling. Here we analyze the regulation of WRM-1 during the EMS cell division. We show that WRM-1ϻGFP initially enters the nucleus at the beginning of telophase in all cells but is exported in signal-nonresponding cells. Nuclear export requires the CRM-1-exportin homolog, IMB-4, and Ran-related molecules, including Ran-3/ RCC1 and Ran-5/RanBP3. Wnt signaling promotes the nuclear maintenance and/or continued accumulation of WRM-1 in daughter cells proximal to the polarizing signal. Our findings support a model for Wnt signaling-dependent polarized cell division in which signaling controls the nuclear accumulation of ␤-catenin
    corecore