368 research outputs found

    Topological Crystalline Insulators in the SnTe Material Class

    Get PDF
    Topological crystalline insulators are new states of matter in which the topological nature of electronic structures arises from crystal symmetries. Here we predict the first material realization of topological crystalline insulator in the semiconductor SnTe, by identifying its nonzero topological index. We predict that as a manifestation of this nontrivial topology, SnTe has metallic surface states with an even number of Dirac cones on high-symmetry crystal surfaces such as {001}, {110} and {111}. These surface states form a new type of high-mobility chiral electron gas, which is robust against disorder and topologically protected by reflection symmetry of the crystal with respect to {110} mirror plane. Breaking this mirror symmetry via elastic strain engineering or applying an in-plane magnetic field can open up a continuously tunable band gap on the surface, which may lead to wide-ranging applications in thermoelectrics, infrared detection, and tunable electronics. Closely related semiconductors PbTe and PbSe also become topological crystalline insulators after band inversion by pressure, strain and alloying.Comment: submitted on Feb. 10, 2012; to appear in Nature Communications; 5 pages, 4 figure

    GP-9s Are Ubiquitous Proteins Unlikely Involved in Olfactory Mediation of Social Organization in the Red Imported Fire Ant, Solenopsis invicta

    Get PDF
    The red imported fire ant (RIFA), Solenopsis invicta, is an invasive species, accidentally introduced in the United States that can cause painful (sometimes life-threatening) stings to human, pets, and livestock. Their colonies have two social forms: monogyne and polygyne that have a single and multiple functional queens, respectively. A major gene (Gp-9), identified as a putative pheromone-binding protein on the basis of a modest amino acid sequence identity, has been suggested to influence the expression of colony social organization. Monogyne queens are reported to possess only the GP-9B alleles, whereas polygyne queens possess both GP-9B and GP-9b. Thus, both social forms are reported to express GP-9B, with GP-9b being a marker expressed in polygynes but it is absent in monogynes. Here, we report two types of polygyne colonies, one that does not express GP-9b (monogyne-like) and the other expressing both proteins, GP-9B and GP-9b. Given their expression pattern, GP-9s are hemolymph proteins, which are more likely to be involved in the transport of lipids and small ligands within the homocoel. GP-9B existed in two forms, one of them is phosphorylated. The helical-rich content of the protein resembles the secondary structures of a beetle hemolymph protein and moth pheromone-binding proteins. An olfactory role is unlikely given the lack of specific expression in the sensillar lymph. In marked contrast to GP-9s, a chemosensory protein, SinvCSP, is demonstrated to be specifically expressed in the antennae. Within the antennae, expression of SinvCSP is restricted to the last two segments, which are known to house olfactory sensilla

    Preparation and Characterization of Covalently Binding of Rat Anti-human IgG Monolayer on Thiol-Modified Gold Surface

    Get PDF
    The 16-mercaptohexadecanoic acid (MHA) film and rat anti-human IgG protein monolayer were fabricated on gold substrates using self-assembled monolayer (SAM) method. The surface properties of the bare gold substrate, the MHA film and the protein monolayer were characterized by contact angle measurements, atomic force microscopy (AFM), grazing incidence X-ray diffraction (GIXRD) method and X-ray photoelectron spectroscopy, respectively. The contact angles of the MHA film and the protein monolayer were 18° and 12°, respectively, all being hydrophilic. AFM images show dissimilar topographic nanostructures between different surfaces, and the thickness of the MHA film and the protein monolayer was estimated to be 1.51 and 5.53 nm, respectively. The GIXRD 2θ degrees of the MHA film and the protein monolayer ranged from 0° to 15°, significantly smaller than that of the bare gold surface, but the MHA film and the protein monolayer displayed very different profiles and distributions of their diffraction peaks. Moreover, the spectra of binding energy measured from these different surfaces could be well fitted with either Au4f, S2p or N1s, respectively. Taken together, these results indicate that MHA film and protein monolayer were successfully formed with homogeneous surfaces, and thus demonstrate that the SAM method is a reliable technique for fabricating protein monolayer

    Agrobacterium rhizogenes-Mediated Transformation of the Parasitic Plant Phtheirospermum japonicum

    Get PDF
    Background: Plants within the Orobanchaceae are an agriculturally important group of parasites that attack economically important crops to obtain water and nutrients from their hosts. Despite their agricultural importance, molecular mechanisms of the parasitism are poorly understood. Methodology/Principal Findings: We developed transient and stable transformation systems for Phtheirospermum japonicum, a facultative parasitic plant in the Orobanchaceae. The transformation protocol was established by a combination of sonication and acetosyringone treatments using the hairy-root-inducing bacterium, Agrobacterium rhizogenes and young seedlings. Transgenic hairy roots of P. japonicum were obtained from cotyledons 2 to 3 weeks after A. rhizogenes inoculation. The presence and the expression of transgenes in P. japonicum were verified by genomic PCR, Southern blot and RT-PCR methods. Transgenic roots derived from A. rhizogenes-mediated transformation were able to develop haustoria on rice and maize roots. Transgenic roots also formed apparently competent haustoria in response to 2,6dimethoxy-1,4-benzoquinone (DMBQ), a haustorium-inducing chemical. Using this system, we introduced a reporter gene with a Cyclin B1 promoter into P. japonicum, and visualized cell division during haustorium formation. Conclusions: We provide an easy and efficient method for hairy-root transformation of P. japonicum. Transgenic marker analysis revealed that cell divisions during haustorium development occur 24 h after DMBQ treatment. The protocol

    Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus

    Get PDF
    BACKGROUND: IL-10 has a potent inhibitory effect on osteoclastogenesis. In vitro and in vivo studies confirm the importance of this cytokine in bone metabolism, for instance IL-10-deficient mice develop the hallmarks of osteoporosis. Although it is known that IL-10 directly inhibits osteoclastogenesis at an early stage, preventing differentiation of osteoclast progenitors to preosteoclasts, the precise mechanism of its action is not yet clear. Several major pathways regulate osteoclastogenesis, with key signalling genes such as p38, TRAF6, NF-κB and NFATc1 well established as playing vital roles. We have looked at gene expression in eleven of these genes using real-time quantitative PCR on RNA extracted from RANKL-treated RAW264.7 monocytes. RESULTS: There was no downregulation by IL-10 of DAP12, FcγRIIB, c-jun, RANK, TRAF6, p38, NF-κB, Gab2, Pim-1, or c-Fos at the mRNA level. However, we found that IL-10 significantly reduces RANKL-induced NFATc1 expression. NFATc1 is transcribed from two alternative promoters in Mus musculus and, interestingly, only the variant transcribed from promoter P1 and beginning with exon 1 was downregulated by IL-10 (isoform 1). In addition, immunofluorescence studies showed that IL-10 reduces NFATc1 levels in RANKL-treated precursors and suppresses nuclear translocation. The inhibitory effect of IL-10 on tartrate-resistant acid phosphatase-positive cell number and NFATc1 mRNA expression was reversed by the protein kinase C agonist phorbol myristate acetate, providing evidence that interleukin-10 disrupts NFATc1 activity through its effect on Ca(2+ )mobilisation. CONCLUSION: IL-10 acts directly on mononuclear precursors to inhibit NFATc1 expression and nuclear translocation, and we provide evidence that the mechanism may involve disruption of Ca(2+ )mobilisation. We detected downregulation only of the NFATc1 isoform 1 transcribed from promoter P1. This is the first report indicating that one of the ways in which IL-10 directly inhibits osteoclastogenesis is by suppressing NFATc1 activity

    Tumor Necrosis Factor Receptor Associated Factor 6 Is Not Required for Atherogenesis in Mice and Does Not Associate with Atherosclerosis in Humans

    Get PDF
    BACKGROUND: Tumor necrosis factor receptor-associated factors (TRAFs) are important signaling molecules for a variety of pro-atherogenic cytokines including CD40L, TNF alpha, and IL1beta. Several lines of evidence identified TRAF6 as a pro-inflammatory signaling molecule in vitro and we previously demonstrated overexpression of TRAF6 in human and Murine atherosclerotic plaques. This study investigated the role of TRAF6-deficiency in mice developing atherosclerosis, a chronic inflammatory disease. METHODOLOGY/PRINCIPAL FINDINGS: Lethally irradiated low density lipoprotein receptor-deficient mice (TRAF6(+/+)/LDLR(-/-)) were reconstituted with TRAF6-deficient fetal liver cells (FLC) and consumed high cholesterol diet for 18 weeks to assess the relevance of TRAF6 in hematopoietic cells for atherogenesis. Additionally, TRAF6(+/-)/LDLR(-/-) mice received TRAF6-deficient FLC to gain insight into the role of TRAF6 deficiency in resident cells. Surprisingly, atherosclerotic lesion size did not differ between the three groups in both aortic roots and abdominal aortas. Similarly, no significant differences in plaque composition could be observed as assessed by immunohistochemistry for macrophages, lipids, smooth muscle cells, T-cells, and collagen. In accord, in a small clinical study TRAF6/GAPDH total blood RNA ratios did not differ between groups of patients with stable coronary heart disease (0.034+/-0.0021, N = 178), acute coronary heart disease (0.029+/-0.0027, N = 70), and those without coronary heart disease (0.032+/-0.0016, N = 77) as assessed by angiography. CONCLUSION: Our study demonstrates that TRAF6 is not required for atherogenesis in mice and does not associate with clinical disease in humans. These data suggest that pro- and anti-inflammatory features of TRAF6 signaling outweigh each other in the context of atherosclerosis

    Arabidopsis HDA6 Regulates Locus-Directed Heterochromatin Silencing in Cooperation with MET1

    Get PDF
    Heterochromatin silencing is pivotal for genome stability in eukaryotes. In Arabidopsis, a plant-specific mechanism called RNA–directed DNA methylation (RdDM) is involved in heterochromatin silencing. Histone deacetylase HDA6 has been identified as a component of such machineries; however, its endogenous targets and the silencing mechanisms have not been analyzed globally. In this study, we investigated the silencing mechanism mediated by HDA6. Genome-wide transcript profiling revealed that the loci silenced by HDA6 carried sequences corresponding to the RDR2-dependent 24-nt siRNAs, however their transcript levels were mostly unaffected in the rdr2 mutant. Strikingly, we observed significant overlap of genes silenced by HDA6 to those by the CG DNA methyltransferase MET1. Furthermore, regardless of dependence on RdDM pathway, HDA6 deficiency resulted in loss of heterochromatic epigenetic marks and aberrant enrichment for euchromatic marks at HDA6 direct targets, along with ectopic expression of these loci. Acetylation levels increased significantly in the hda6 mutant at all of the lysine residues in the H3 and H4 N-tails, except H4K16. Interestingly, we observed two different CG methylation statuses in the hda6 mutant. CG methylation was sustained in the hda6 mutant at some HDA6 target loci that were surrounded by flanking DNA–methylated regions. In contrast, complete loss of CG methylation occurred in the hda6 mutant at the HDA6 target loci that were isolated from flanking DNA methylation. Regardless of CG methylation status, CHG and CHH methylation were lost and transcriptional derepression occurred in the hda6 mutant. Furthermore, we show that HDA6 binds only to its target loci, not the flanking methylated DNA, indicating the profound target specificity of HDA6. We propose that HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1, possibly recruiting MET1 to specific loci, thus forming the foundation of silent chromatin structure for subsequent non-CG methylation
    corecore