6 research outputs found

    Activation of LXR Receptors and Inhibition of TRAP1 Causes Synthetic Lethality in Solid Tumors

    Full text link
    Cholesterol is a pivotal factor for cancer cells to entertain their relentless growth. In this case, we provide a novel strategy to inhibit tumor growth by simultaneous activation of liver-X-receptors and interference with Tumor Necrosis Factor Receptor-associated Protein 1 (TRAP1). Informed by a transcriptomic and subsequent gene set enrichment analysis, we demonstrate that inhibition of TRAP1 results in suppression of the cholesterol synthesis pathway in stem-like and established glioblastoma (GBM) cells by destabilizing the transcription factor SREBP2. Notably, TRAP1 inhibition induced cell death, which was rescued by cholesterol and mevalonate. Activation of liver X receptor (LXR) by a clinically validated LXR agonist, LXR623, along with the TRAP1 inhibitor, gamitrinib (GTPP), results in synergistic reduction of tumor growth and cell death induction in a broad range of solid tumors, which is rescued by exogenous cholesterol. The LXR agonist and TRAP1 inhibitor mediated cell death is regulated at the level of Bcl-2 family proteins with an elevation of pro-apoptotic Noxa. Silencing of Noxa and its effector BAK attenuates cell death mediated by the combination treatment of LXR agonists and TRAP1 inhibition. Combined inhibition of TRAP1 and LXR agonists elicits a synergistic activation of the integrated stress response with an increase in activating transcription factor 4 (ATF4) driven by protein kinase RNA-like endoplasmic reticulum kinase (PERK). Silencing of ATF4 attenuates the increase of Noxa by using the combination treatment. Lastly, we demonstrate in patient-derived xenografts that the combination treatment of LXR623 and gamitrinib reduces tumor growth more potent than each compound. Taken together, these results suggest that TRAP1 inhibition and simultaneous activation of LXR might be a potent novel treatment strategy for solid malignancies

    Dual Inhibition of Bcl-2/Bcl-xL and XPO1 is synthetically lethal in glioblastoma model systems

    Get PDF
    XPO1 has recently emerged as a viable treatment target for solid malignancies, including glioblastoma (GBM), the most common primary malignant brain tumor in adults. However, given that tumors become commonly resistant to single treatments, the identification of combination therapies is critical. Therefore, we tested the hypothesis that inhibition of anti-apoptotic Bcl-2 family members and XPO1 are synthetically lethal. To this purpose, two clinically validated drug compounds, the BH3-mimetic, ABT263, and the XPO1 inhibitor, Selinexor, were used in preclinical GBM model systems. Our results show that inhibition of XPO1 reduces cellular viability in glioblastoma cell cultures. Moreover, addition of ABT263 significantly enhances the efficacy of XPO1 inhibition on the reduction of cellular viability, which occurs in a synergistic manner. While selinexor inhibits the proliferation of glioblastoma cells, the combination treatment of ABT263 and selinexor results in substantial induction of cell death, which is accompanied by activation of effector- initiator caspases and cleavage of PARP. Mechanistically we find that XPO1 inhibition results in down-regulation of anti-apoptotic Mcl-1 and attenuates ABT263 driven Mcl-1 up-regulation. Consistently, siRNA mediated silencing of Mcl-1 sensitizes for ABT263 mediated cell death and partially for the combination treatment. By using a human patient-derived xenograft model of glioblastoma in mice, we demonstrate that the combination treatment of ABT263 and Selinexor reduces tumor growth significantly more than each compound alone. Collectively, these results suggest that inhibition of XPO1 and Bcl-2/Bcl-xL might be a potential strategy for the treatment of malignant glial tumors

    Activation of LXRĪ² inhibits tumor respiration and is synthetically lethal with Bcl-xL inhibition

    Full text link
    Liver-X-receptor (LXR) agonists are known to bear anti-tumor activity. However, their efficacy is limited and additional insights regarding the underlying mechanism are necessary. By performing transcriptome analysis coupled with global polar metabolite screening, we show that LXR agonists, LXR623 and GW3965, enhance synergistically the anti-proliferative effect of BH3 mimetics in solid tumor malignancies, which is predominantly mediated by cell death with features of apoptosis and is rescued by exogenous cholesterol. Extracellular flux analysis and carbon tracing experiments (U-13C-glucose and U-13C-glutamine) reveal that within 5 h, activation of LXRĪ² results in reprogramming of tumor cell metabolism, leading to suppression of mitochondrial respiration, a phenomenon not observed in normal human astrocytes. LXR activation elicits a suppression of respiratory complexes at the protein level by reducing their stability. In turn, energy starvation drives an integrated stress response (ISR) that up-regulates pro-apoptotic Noxa in an ATF4-dependent manner. Cholesterol and nucleotides rescue from the ISR elicited by LXR agonists and from cell death induced by LXR agonists and BH3 mimetics. In conventional and patient-derived xenograft models of colon carcinoma, melanoma, and glioblastoma, the combination treatment of ABT263 and LXR agonists reduces tumor sizes significantly stronger than single treatments. Therefore, the combination treatment of LXR agonists and BH3 mimetics might be a viable efficacious treatment approach for solid malignancies

    Induction of synthetic lethality in IDH1-mutated gliomas through inhibition of Bcl-xL

    Get PDF
    Glioblastoma (GBM) cells are often characterized by the presence of the IDH1 R132H mutation and high expression of anti-apoptotic proteins. Here, the authors show that the inhibition of Bcl-xL is synthetically lethal in IDH1-mutated GBM models and that this effect is mediated by the oncometabolite, 2-HG, which reduces Mcl-1 protein levels

    Activation of LXRĪ² inhibits tumor respiration and is synthetically lethal with Bclā€xL inhibition

    No full text
    Abstract Liverā€Xā€receptor (LXR) agonists are known to bear antiā€tumor activity. However, their efficacy is limited and additional insights regarding the underlying mechanism are necessary. By performing transcriptome analysis coupled with global polar metabolite screening, we show that LXR agonists, LXR623 and GW3965, enhance synergistically the antiā€proliferative effect of BH3 mimetics in solid tumor malignancies, which is predominantly mediated by cell death with features of apoptosis and is rescued by exogenous cholesterol. Extracellular flux analysis and carbon tracing experiments (Uā€13Cā€glucose and Uā€13Cā€glutamine) reveal that within 5Ā h, activation of LXRĪ² results in reprogramming of tumor cell metabolism, leading to suppression of mitochondrial respiration, a phenomenon not observed in normal human astrocytes. LXR activation elicits a suppression of respiratory complexes at the protein level by reducing their stability. In turn, energy starvation drives an integrated stress response (ISR) that upā€regulates proā€apoptotic Noxa in an ATF4ā€dependent manner. Cholesterol and nucleotides rescue from the ISR elicited by LXR agonists and from cell death induced by LXR agonists and BH3 mimetics. In conventional and patientā€derived xenograft models of colon carcinoma, melanoma, and glioblastoma, the combination treatment of ABT263 and LXR agonists reduces tumor sizes significantly stronger than single treatments. Therefore, the combination treatment of LXR agonists and BH3 mimetics might be a viable efficacious treatment approach for solid malignancies
    corecore