35 research outputs found

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Insights into the Endocrine Disrupting Activity of Emerging Non-Phthalate Alternate Plasticizers against Thyroid Hormone Receptor: A Structural Perspective

    No full text
    Many endocrine-disrupting chemicals (EDCs) have a ubiquitous presence in our environment due to anthropogenic activity. These EDCs can disrupt hormone signaling in the human and animal body systems including the very important hypothalamic-pituitary-thyroid (HPT) axis causing adverse health effects. Thyroxine (T4) and triiodothyronine (T3) are hormones of the HPT axis which are essential for regulation of metabolism, heart rate, body temperature, growth, development, etc. In this study, potential endocrine-disrupting activity of the most common phthalate plasticizer, DEHP, and emerging non-phthalate alternate plasticizers, DINCH, ATBC, and DEHA against thyroid hormone receptor (TRα) were characterized. The structural binding characterization of indicated ligands was performed against the TRα ligand binding site employing Schrodinger’s induced fit docking (IFD) approach. The molecular simulations of interactions of the ligands against the residues lining a TRα binding pocket, including bonding interactions, binding energy, docking score, and IFD score were analyzed. In addition, the structural binding characterization of TRα native ligand, T3, was also done for comparative analysis. The results revealed that all ligands were placed stably in the TRα ligand-binding pocket. The binding energy values were highest for DINCH, followed by ATBC, and were higher than the values estimated for TRα native ligand, T3, whereas the values for DEHA and DEHP were similar and comparable to that of T3. This study suggested that all the indicated plasticizers have the potential for thyroid hormone disruption with two alternate plasticizers, DINCH and ATBC, exhibiting higher potential for thyroid dysfunction compared to DEHA and DEHP

    Amelioration of hyperglycaemia and modulation of antioxidant status by Alcea rosea seeds in alloxan-induced diabetic rats

    No full text
    Context: Alcea rosea L. (Malvaceae) has various medicinal uses including anticancer, anti-inflammatory and analgesic properties. However, there is no report on its antidiabetic activity. Objective: Alcea rosea seed extracts were evaluated for antihyperglycaemic and antioxidative potential in diabetic rats. Materials and methods: Single intra-peritoneal injection of alloxan (130 mg/kg b.w.) was used for induction of diabetes in Albino Wistar rats. Antihyperglycaemic and antioxidant activities of methanol and aqueous extracts of Alcea rosea seed (100 and 300 mg/kg b.w.), administered orally on daily basis for 15 days, were assessed in vivo for fasting blood glucose level and antioxidant status of liver and pancreas. Metformin was used as a positive control. Results: Aqueous and methanol extracts (300 mg/kg b.w.) decreased blood glucose level in diabetic rats by 24% and 46%, respectively. Administration of aqueous and methanol extracts at 300 mg/kg b.w. significantly (p < 0.01) modulated the antioxidant status of liver in diabetic rats by increasing levels of GR (22.5 ± 1.0, 24.4 ± 1.02 μg GSSG utilized/min/mg of protein), GPx (20.7 ± 1.2, 23.6 ± 2.04 μg GSH utilized/min/mg of protein), SOD (36.1 ± 1.7, 39.05 ± 1.5 units/mg of protein) and CAT (1744.5 ± 132.5, 1956.6 ± 125.2 nmol H2O2 decomposed/min/mg of protein), respectively. Similar results were observed for pancreas. Discussion and conclusions: Antihyperglycaemic and antioxidative potentials of Alcea rosea seeds suggest its usefulness in management of diabetes and its complications. This is the first report on antidiabetic activity of this plant

    Analgesic, anti-inflammatory and anti-platelet activities of the methanolic extract of Acacia modesta leaves

    No full text
    The current study was aimed to evaluate Acacia modesta for analgesic, anti-inflammatory, and anti-platelet activities. The analgesic and anti-inflammatory effects were assessed in rodents using acetic acid and formalin-induced nociception, hot plate and carrageenan-induced rat paw oedema tests. The intraperitoneal (i.p.) administration of the methanolic extract (50 and 100 mg/kg) produced significant inhibition (P \u3c 0.01) of the acetic acid-induced writhing in mice and suppressed formalin-induced licking response of animals in both phases of the test. In the hot plate assay the plant extract (100 mg/kg) increased pain threshold of mice. Naloxone (5 mg/kg i.p.) partially reversed the analgesic effect of the extract in formalin and hot plate tests. A. modesta (100 and 200 mg/kg i.p.) exhibited sedative effect in barbiturate-induced hypnosis test similar to that produced by diazepam (10 mg/kg i.p.). The plant extract (50–200 mg/kg i.p.) produced marked anti-inflammatory effect in carrageenan-induced rat paw oedema assay comparable to diclofenac and produced a dose-dependent (0.5–2.5 mg/mL) inhibitory effect against arachidonic acid induced platelet aggregation. These data suggest that A. modesta possesses peripheral analgesic and anti-inflammatory properties, with analgesic effects partially associated with the opioid system

    Endocrine Disruption: Computational Perspectives on Human Sex Hormone-Binding Globulin and Phthalate Plasticizers.

    No full text
    Phthalates are a class of high volume production chemicals used as plasticizers for household and industrial use. Several members of this chemical family have endocrine disrupting activity. Owing to ubiquitous environmental distribution and exposure of human population at all stages of life, phthalate contamination is a continuous global public health problem. Clinical and experimental studies have indicated that several phthalates are associated with adverse effects on development and function of human and animal systems especially the reproductive system and exposures during pregnancy and early childhood are by far of utmost concern. Sex hormone-binding globulin (SHBG) is a plasma carrier protein that binds androgens and estrogens and represents a potential target for phthalate endocrine disruptor function in the body. In the present study, the binding mechanism of the nine phthalates i.e. DMP, DBP, DIBP, BBP, DNHP, DEHP, DNOP, DINP, DIDP with human SHBG was delineated by molecular docking simulation. Docking complexes of the nine phthalates displayed interactions with 15-31 amino acid residues of SHBG and a commonality of 55-95% interacting residues between natural ligand of SHBG, dihydrotestosterone, and the nine phthalate compounds was observed. The binding affinity values were more negative for long chain phthalates DEHP, DNOP, DINP, and DIDP compared to short chain phthalates such as DMP and DBP. The Dock score and Glide score values were also higher for long chain phthalates compared to short chain phthalates. Hence, overlapping of interacting amino acid residues between phthalate compounds and natural ligand, dihydrotestosterone, suggested potential disrupting activity of phthalates in the endocrine homeostasis function of SHBG, with long chain phthalates expected to be more potent than the short chain phthalates

    Organotin Antifouling Compounds and Sex-Steroid Nuclear Receptor Perturbation: Some Structural Insights

    No full text
    Organotin compounds (OTCs) are a commercially important group of organometallic compounds of tin used globally as polyvinyl chloride stabilizers and marine antifouling biocides. Worldwide use of OTCs has resulted in their ubiquitous presence in ecosystems across all the continents. OTCs have metabolic and endocrine disrupting effects in marine and terrestrial organisms. Thus, harmful OTCs (tributyltin) have been banned by the International Convention on the Control of Harmful Antifouling Systems since 2008. However, continued manufacturing by non-member countries poses a substantial risk for animal and human health. In this study, structural binding of common commercial OTCs, tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), monophenyltin (MPT), and azocyclotin (ACT) against sex-steroid nuclear receptors, androgen receptor (AR), and estrogen receptors (ERα, ERβ) was performed using molecular docking and MD simulation. TBT, DBT, DPT, and MPT bound deep within the binding sites of AR, ERα, and Erβ, showing good dock score, binding energy and dissociation constants that were comparable to bound native ligands, testosterone and estradiol. The stability of docking complex was shown by MD simulation of organotin/receptor complex with RMSD, RMSF, Rg, and SASA plots showing stable interaction, low deviation, and compactness of the complex. A high commonality (50–100%) of interacting residues of ERα and ERβ for the docked ligands and bound native ligand (estradiol) indicated that the organotin compounds bound in the same binding site of the receptor as the native ligand. The results suggested that organotins may interfere with the natural steroid/receptor binding and perturb steroid signaling

    Potential Disruption of Systemic Hormone Transport by Tobacco Alkaloids Using Computational Approaches

    No full text
    Tobacco/nicotine is one of the most toxic and addictive substances and continues to pose a significant threat to global public health. The harmful effects of smoking/nicotine affect every system in the human body. Nicotine has been associated with effects on endocrine homeostasis in humans such as the imbalance of gonadal steroid hormones, adrenal corticosteroid hormones, and thyroid hormones. The present study was conducted to characterize the structural binding interactions of nicotine and its three important metabolites, cotinine, trans-3&prime;-hydroxycotinine, and 5&prime;-hydroxycotinine, against circulatory hormone carrier proteins, i.e., sex-hormone-binding globulin (SHBG), corticosteroid-binding globulin (CBG), and thyroxine-binding globulin (TBG). Nicotine and its metabolites formed nonbonded contacts and/or hydrogen bonds with amino acid residues of the carrier proteins. For SHBG, Phe-67 and Met-139 were the most important amino acid residues for nicotine ligand binding showing the maximum number of interactions and maximum loss in ASA. For CBG, Trp-371 and Asn-264 were the most important amino acid residues, and for TBG, Ser-23, Leu-269, Lys-270, Asn-273, and Arg-381 were the most important amino acid residues. Most of the amino acid residues of carrier proteins interacting with nicotine ligands showed a commonality with the interacting residues for the native ligands of the proteins. Taken together, the results suggested that nicotine and its three metabolites competed with native ligands for binding to their carrier proteins. Thus, nicotine and its three metabolites may potentially interfere with the binding of testosterone, estradiol, cortisol, progesterone, thyroxine, and triiodothyronine to their carrier proteins and result in the disbalance of their transport and homeostasis in the blood circulation

    Crystal structure of human sex hormone-binding globulin (SHBG) in ribbon form representation co-complexed with dihydrotestosterone (DHT) (left panel) and two dimensional representation of DHT (right panel).

    No full text
    <p>Crystal structure of human sex hormone-binding globulin (SHBG) in ribbon form representation co-complexed with dihydrotestosterone (DHT) (left panel) and two dimensional representation of DHT (right panel).</p
    corecore