277 research outputs found
Automatic Segmentation and Disease Classification Using Cardiac Cine MR Images
Segmentation of the heart in cardiac cine MR is clinically used to quantify
cardiac function. We propose a fully automatic method for segmentation and
disease classification using cardiac cine MR images. A convolutional neural
network (CNN) was designed to simultaneously segment the left ventricle (LV),
right ventricle (RV) and myocardium in end-diastole (ED) and end-systole (ES)
images. Features derived from the obtained segmentations were used in a Random
Forest classifier to label patients as suffering from dilated cardiomyopathy,
hypertrophic cardiomyopathy, heart failure following myocardial infarction,
right ventricular abnormality, or no cardiac disease. The method was developed
and evaluated using a balanced dataset containing images of 100 patients, which
was provided in the MICCAI 2017 automated cardiac diagnosis challenge (ACDC).
The segmentation and classification pipeline were evaluated in a four-fold
stratified cross-validation. Average Dice scores between reference and
automatically obtained segmentations were 0.94, 0.88 and 0.87 for the LV, RV
and myocardium. The classifier assigned 91% of patients to the correct disease
category. Segmentation and disease classification took 5 s per patient. The
results of our study suggest that image-based diagnosis using cine MR cardiac
scans can be performed automatically with high accuracy.Comment: Accepted in STACOM Automated Cardiac Diagnosis Challenge 201
Automatic Segmentation of the Left Ventricle in Cardiac CT Angiography Using Convolutional Neural Network
Accurate delineation of the left ventricle (LV) is an important step in
evaluation of cardiac function. In this paper, we present an automatic method
for segmentation of the LV in cardiac CT angiography (CCTA) scans. Segmentation
is performed in two stages. First, a bounding box around the LV is detected
using a combination of three convolutional neural networks (CNNs).
Subsequently, to obtain the segmentation of the LV, voxel classification is
performed within the defined bounding box using a CNN. The study included CCTA
scans of sixty patients, fifty scans were used to train the CNNs for the LV
localization, five scans were used to train LV segmentation and the remaining
five scans were used for testing the method. Automatic segmentation resulted in
the average Dice coefficient of 0.85 and mean absolute surface distance of 1.1
mm. The results demonstrate that automatic segmentation of the LV in CCTA scans
using voxel classification with convolutional neural networks is feasible.Comment: This work has been published as: Zreik, M., Leiner, T., de Vos, B.
D., van Hamersvelt, R. W., Viergever, M. A., I\v{s}gum, I. (2016, April).
Automatic segmentation of the left ventricle in cardiac CT angiography using
convolutional neural networks. In Biomedical Imaging (ISBI), 2016 IEEE 13th
International Symposium on (pp. 40-43). IEE
A Deep Learning Framework for Unsupervised Affine and Deformable Image Registration
Image registration, the process of aligning two or more images, is the core
technique of many (semi-)automatic medical image analysis tasks. Recent studies
have shown that deep learning methods, notably convolutional neural networks
(ConvNets), can be used for image registration. Thus far training of ConvNets
for registration was supervised using predefined example registrations.
However, obtaining example registrations is not trivial. To circumvent the need
for predefined examples, and thereby to increase convenience of training
ConvNets for image registration, we propose the Deep Learning Image
Registration (DLIR) framework for \textit{unsupervised} affine and deformable
image registration. In the DLIR framework ConvNets are trained for image
registration by exploiting image similarity analogous to conventional
intensity-based image registration. After a ConvNet has been trained with the
DLIR framework, it can be used to register pairs of unseen images in one shot.
We propose flexible ConvNets designs for affine image registration and for
deformable image registration. By stacking multiple of these ConvNets into a
larger architecture, we are able to perform coarse-to-fine image registration.
We show for registration of cardiac cine MRI and registration of chest CT that
performance of the DLIR framework is comparable to conventional image
registration while being several orders of magnitude faster.Comment: Accepted: Medical Image Analysis - Elsevie
Prognostic value of heart valve calcifications for cardiovascular events in a lung cancer screening population
To assess the prognostic value of aortic valve and mitral valve/annulus calcifications for cardiovascular events in heavily smoking men without a history of cardiovascular disease. Heavily smoking men without a cardiovascular disease history who underwent non-contrast-enhanced low-radiation-dose chest CT for lung cancer screening were included. Non-imaging predictors (age, smoking status and pack-years) were collected and imaging-predictors (calcium volume of the coronary arteries, aorta, aortic valve and mitral valve/annulus) were obtained. The outcome was the occurrence of cardiovascular events. Multivariable Cox proportional-hazards regression was used to calculate hazard-ratios (HRs) with 95 % confidence interval (CI). Subsequently, concordance-statistics were calculated. In total 3111 individuals were included, of whom 186 (6.0 %) developed a cardiovascular event during a follow-up of 2.9 (Q1-Q3, 2.7-3.3) years. If aortic (n = 657) or mitral (n = 85) annulus/valve calcifications were present, cardiovascular event incidence increased to 9.0 % (n = 59) or 12.9 % (n = 11), respectively. HRs of aortic and mitral valve/annulus calcium volume for cardiovascular events were 1.46 (95 % CI, 1.09-1.84) and 2.74 (95 % CI, 0.92-4.56) per 500 mm(3). The c-statistic of a basic model including age, pack-years, current smoking status, coronary and aorta calcium volume was 0.68 (95 % CI, 0.63-0.72), which did not change after adding heart valve calcium volume. Aortic valve calcifications are predictors of future cardiovascular events. However, there was no added prognostic value beyond age, number of pack-years, current smoking status, coronary and aorta calcium volume for short term cardiovascular events
- …