5 research outputs found

    EVALUATION OF THE MINIMUM VELOCITY OF POLYDISPERSE BED FLUIDIZATION COMPOUNDED OF BIOMASS PELLETS AND THEIR MIXTURES WITH FINE PARTICLES OF COAL

    Get PDF
    It turned out that the change graphs of the absolute value of dimensionless amplitude of pressure fluctuations against air velocity can be used to evaluate values of the minimum fluidization velocity of polydisperse bed biomass pellets. An experimental verification is reported on the early predicting index of agglomeration in bubbling fluidized bed of biomass pellets and fine coal particles

    Wet Torrefaction of Poultry Litter in a Pilot Unit: A Numerical Assessment of the Process Parameters

    No full text
    International audienceA numerical model for the wet torrefaction of poultry litter in a pilot unit was developed in this study. The model accounted for the following process steps: preheating biomass in a feed hopper, feeding biomass into the reactor, fluidized-bed generation using superheated steam, and the supply of additional heat by the electric heating of the reactor walls. Following a “black box” approach, a major assumption of the model is that the behavior of the fluidized-bed reactor is similar to a completely stirred tank reactor (CSTR). Under this assumption, the properties of the particles and gases do not depend on their location inside the reactor. During wet torrefaction, poultry-litter biomass was heated to a predetermined temperature and decomposed, generating biochar along with a gas phase (torgas), whose amounts depended on the content of inert ash in the biomass particles. Variable optimization in the model was performed using MATLAB software. The model successfully estimated the optimal duration required for the completion of wet torrefaction under various conditions: temperature, batch weight, reactor dimensions, etc. The model was validated using experimental data obtained from a series of wet torrefaction experiments performed in a fluidized bed, and provided reliable estimations of the duration of the process depending on material properties, reactor size and feedstock characteristics

    Prediction of the Behavior of Sunflower Husk Ash after Its Processing by Various Torrefaction Methods

    No full text
    Biomass can be considered an alternative to coal in the production of heat and electricity. Many types of biomass are waste from agriculture and the food industry. This waste is cheap, readily available, and replenished annually. However, most agricultural and food industry wastes (sugar cane pulp, olive and sunflower oil production wastes, straw, etc.) have ash with a low melting point. This leads to a rapid growth of ash deposits on the heating surfaces of boilers; as a result, the actual efficiency of boilers in which waste from agriculture and the food industry is burned is 45–50%. Known biomass pre-treatment technologies that allow for the fuel characteristics of biowaste. For example, leaching of biowaste in water at a temperature of 80–240 °C makes it possible to drastically reduce the content of alkali metal compounds in the ash, the presence of which reduces the melting point of the ash. However, this biomass pre-treatment technology is complex and requires additional costs for drying the treated biomass. We proposed to use torrefaction for pre-treatment of biomass, which makes it possible to increase the heat of combustion of biomass, increase the hydrophobicity of biomass, and reduce the cost of grinding it. However, we are not aware of studies that have studied the effect of torrefaction on the chemical composition of ash from the point of view of solving the problem of preventing the formation of agglomerates and reducing the growth rate of ash deposits on the convective heating surfaces of boilers. In this paper, the characteristics of sunflower husk subjected to torrefaction in an environment of superheated steam at a temperature of 300 °C and in an environment of gaseous products at a temperature of 250 °C are studied. All experiments were conducted using fluidized bed technology. The resulting biochar has a calorific value of 14.8–23% higher than the initial husk. To assess the behavior of sunflower husk ash, predictive coefficients were calculated. Torrefaction of sunflower husks does not exclude the possibility of slagging of the furnace but reduces the likelihood of slagging by 2.31–7.27 times. According to calculations, the torrefaction of sunflower husks reduces the likelihood of ash deposits on the convective heating surfaces of the boiler by 2.1–12.2 times. According to its fuel characteristics, the husk, after torrefaction in an environment of superheated steam, approaches wood waste, i.e., can be burned separately without additives or mixtures with other fuels with refractory ash
    corecore