16 research outputs found

    A Friendly Face: Do Text-to-Image Systems Rely on Stereotypes when the Input is Under-Specified?

    Full text link
    As text-to-image systems continue to grow in popularity with the general public, questions have arisen about bias and diversity in the generated images. Here, we investigate properties of images generated in response to prompts which are visually under-specified, but contain salient social attributes (e.g., 'a portrait of a threatening person' versus 'a portrait of a friendly person'). Grounding our work in social cognition theory, we find that in many cases, images contain similar demographic biases to those reported in the stereotype literature. However, trends are inconsistent across different models and further investigation is warranted.Comment: Appearing in the AAAI 2023 Workshop on Creative AI Across Modalitie

    Segmental Spectral Decomposition as a Time Persistent Method of BioImpedance Spectroscopy Feature Extraction

    Get PDF
    BioImpedance Spectroscopy (BIS) have been investigated in many research areas as a method to detect changes in living tissues. However, BIS measurements are known to be hardly reproducible in clinical applications. This article proposes segmental spectral decomposition as a method of extracting reproducible parameters from raw BIS. The efficiency of this method is then compared to conventional Cole-Cole parameter extraction in a classification task

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Necessity and Sufficiency for Explaining Text Classifiers: A Case Study in Hate Speech Detection

    Full text link
    We present a novel feature attribution method for explaining text classifiers, and analyze it in the context of hate speech detection. Although feature attribution models usually provide a single importance score for each token, we instead provide two complementary and theoretically-grounded scores -- necessity and sufficiency -- resulting in more informative explanations. We propose a transparent method that calculates these values by generating explicit perturbations of the input text, allowing the importance scores themselves to be explainable. We employ our method to explain the predictions of different hate speech detection models on the same set of curated examples from a test suite, and show that different values of necessity and sufficiency for identity terms correspond to different kinds of false positive errors, exposing sources of classifier bias against marginalized groups.Comment: NAACL 202

    Time-frequency based contactless estimation of vital signs of human while walking using PMCW radar

    No full text
    This paper presents a novel algorithm for radar-based estimation of vital signs in a noncontact, privacy friendly manner while subjects are in motion. Unlike the traditional methods that merely use the Fourier spectrum of the output of the radar receiver to obtain estimates of breathing and heart rates, the proposed algorithm uses time-frequency approach. From the Time-Frequency Representation (TFR) of the output of a pseudo-random binary Phase Modulated Continuous Wave (PMCW) radar, frequency of the maximum amplitude at every time instant is estimated and a timeseries of dominant frequencies is formed. MUSIC algorithm is then applied to estimate the vital signs from this series. The proposed algorithm is demonstrated using simulated and real data. Simulated data is obtained through modeling the output of a PMCW radar. Real data is obtained by monitoring a walking subject for 10 minutes in a realistic setting with a 24.125 GHz PMCW radar. The vital sign estimates obtained using the proposed method are found to match closely the estimates from wearable devices that were applied to provide the ground truth for breathing and heart rates

    Model of Cholera Forecasting Using Artificial Neural Network in Chabahar City, Iran

    No full text
    Background: Cholera as an endemic disease remains a health issue in Iran despite decrease in incidence. Since forecasting epidemic diseases provides appropriate preventive actions in disease spread, different forecasting methods including artificial neural networks have been developed to study parameters involved in incidence and spread of epidemic diseases such as cholera.Objectives: In this study, cholera in rural area of Chabahar, Iran was investigated to achieve a proper forecasting model.Materials and Methods: Data of cholera was gathered from 465 villages, of which 104 reported cholera during ten years period of study. Logistic regression modeling and correlate bivariate were used to determine risk factors and achieve possible predictive model one-hidden-layer perception neural network with backpropagation training algorithm and the sigmoid activation function was trained and tested between the two groups of infected and non-infected villages after preprocessing. For determining validity of prediction, the ROC diagram was used. The study variables included climate conditions and geographical parameters.Results: After determining significant variables of cholera incidence, the described artificial neural network model was capable of forecasting cholera event among villages of test group with accuracy up to 80%. The highest accuracy was achieved when model was trained with variables that were significant in statistical analysis describing that the two methods confirm the result of each other.Conclusions: Application of artificial neural networking assists forecasting cholera for adopting protective measures. For a more accurate prediction, comprehensive information is required including data on hygienic, social and demographic parameters

    Recognizing UMLS Semantic Types with Deep Learning

    No full text
    Entity recognition is a critical first step to a number of clinical NLP applications, such as entity linking and relation extraction. We present the first attempt to apply state-of-the-art entity recognition approaches on a newly released dataset, MedMentions. This dataset contains over 4000 biomedical abstracts, annotated for UMLS semantic types. In comparison to existing datasets, MedMentions contains a far greater number of entity types, and thus represents a more challenging but realistic scenario in a real-world setting. We explore a number of relevant dimensions, including the use of contextual versus non-contextual word embeddings, general versus domain-specific unsupervised pre-training, and different deep learning architectures. We contrast our results against the well-known i2b2 2010 entity recognition dataset, and propose a new method to combine general and domain-specific information. While producing a state-of-the-art result for the i2b2 2010 task (F1 = 0.90), our results on MedMentions are significantly lower (F1 = 0.63), suggesting there is still plenty of opportunity for improvement on this new data
    corecore