580 research outputs found

    Uncertainty, entropy and decoherence of the damped harmonic oscillator in the Lindblad theory of open quantum systems

    Get PDF
    In the framework of the Lindblad theory for open quantum systems, expressions for the density operator, von Neumann entropy and effective temperature of the damped harmonic oscillator are obtained. The entropy for a state characterized by a Wigner distribution function which is Gaussian in form is found to depend only on the variance of the distribution function. We give a series of inequalities, relating uncertainty to von Neumann entropy and linear entropy. We analyze the conditions for purity of states and show that for a special choice of the diffusion coefficients, the correlated coherent states (squeezed coherent states) are the only states which remain pure all the time during the evolution of the considered system. These states are also the most stable under evolution in the presence of the environment and play an important role in the description of environment induced decoherence.Comment: 41 pages, LaTe

    Quantum decoherence and classical correlations of the harmonic oscillator in the Lindblad theory

    Full text link
    In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence and classical correlations of a harmonic oscillator interacting with a thermal bath. The transition from quantum to classical behaviour of the considered system is analyzed and it is shown that the classicality takes place during a finite interval of time. We calculate also the decoherence time and show that it has the same scale as the time after which statistical fluctuations become comparable with quantum fluctuations.Comment: 24 pages, 8 figure

    Quantum decoherence in the theory of open systems

    Full text link
    In the framework of the Lindblad theory for open quantum systems, we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. It is found that the system manifests a quantum decoherence which is more and more significant in time. We calculate also the decoherence time scale and analyze the transition from quantum to classical behaviour of the considered system.Comment: 6 pages; talk at the 3rd International Workshop "Quantum Physics and Communication" (QPC 2005), Dubna, Russia, 200

    Entanglement dynamics of bipartite system in squeezed vacuum reservoirs

    Full text link
    Entanglement plays a crucial role in quantum information protocols, thus the dynamical behavior of entangled states is of a great importance. In this paper we suggest a useful scheme that permits a direct measure of entanglement in a two-qubit cavity system. It is realized in the cavity-QED technology utilizing atoms as fying qubits. To quantify entanglement we use the concurrence. We derive the conditions, which assure that the state remains entangled in spite of the interaction with the reservoir. The phenomenon of sudden death entanglement (ESD) in a bipartite system subjected to squeezed vacuum reservoir is examined. We show that the sudden death time of the entangled states depends on the initial preparation of the entangled state and the parameters of the squeezed vacuum reservoir.Comment: 10 pages, 5 figures, CEWQO17(St Andrews
    • …
    corecore