Entanglement plays a crucial role in quantum information protocols, thus the
dynamical behavior of entangled states is of a great importance. In this paper
we suggest a useful scheme that permits a direct measure of entanglement in a
two-qubit cavity system. It is realized in the cavity-QED technology utilizing
atoms as fying qubits. To quantify entanglement we use the concurrence. We
derive the conditions, which assure that the state remains entangled in spite
of the interaction with the reservoir. The phenomenon of sudden death
entanglement (ESD) in a bipartite system subjected to squeezed vacuum reservoir
is examined. We show that the sudden death time of the entangled states depends
on the initial preparation of the entangled state and the parameters of the
squeezed vacuum reservoir.Comment: 10 pages, 5 figures, CEWQO17(St Andrews