66 research outputs found

    Determination of Severity of Murine IgA Nephropathy by Glomerular Complement Activation by Aberrantly Glycosylated IgA and Immune Complexes

    Get PDF
    The pathogenic roles of glomerular deposition of components of the complement cascade in IgA nephropathy (IgAN) are not completely clarified. To investigate the pathologic role of complement pathways in IgAN, two IgAN-prone mouse models were examined. Grouped ddY (gddY) mice showed significant high proteinuria, severe glomerular lesions, and extracellular matrix expansion compared with high serum IgA (HIGA) mice but with similar intensity of glomerular IgA deposition. Glomerular activation of the classical, lectin, and alternative pathways was demonstrated by significantly stronger staining for complement (C)3, C5b-9, C1q, C4, mannose-binding lectin (MBL)-A/C, MBL-associated serine protease-2, and factor B and properdin in gddY mice than in HIGA mice. Similarly, the serum levels of IgA-IgG2a/IgM and IgA–MBL-A/C immune complexes and polymeric IgA were significantly higher in gddY mice than in HIGA mice. Moreover, the serum levels of aberrantly glycosylated IgA characterized by the binding of Sambucus nigra bark lectin and Ricinus communis agglutinin I were significantly higher in gddY mice than in HIGA mice. This aberrancy in glycosylation was confirmed by monosaccharide compositional analysis of purified IgA using gas-liquid chromatography. This study is the first to demonstrate that aberrantly glycosylated IgA may influence the formation of macromolecular IgA including IgA-IgG immune complexes and subsequent complement activation, leading to full progression of IgAN

    Properdin has an ascendancy over factor H regulation in complement-mediated renal tubular damage

    Get PDF
    BACKGROUND: Urinary (U)-complement components have been detected in patients with proteinuric renal diseases, and complement activation via the alternative pathway (AP) is believed to play a role in renal tubular damage. The present study aimed to examine the regulation of complement AP activation in patients with renal tubular damage by focusing on the balance between properdin (P) and factor H (fH). METHODS: In the in vivo studies, U concentrations of P, fH and membrane attack complex (MAC) were measured in patients with renal diseases using an enzyme-linked immunosorbent assay (ELISA), and their relationships with the clinical data were evaluated. In the in vitro studies, human proximal tubular epithelial cells (PTECs) were incubated with normal human serum (NHS), P-depleted serum (PDS), purified P and/or fH. Changes in cell morphology and phenotype were assessed by microscopy, real-time polymerase chain reaction (PCR), immunostaining and a cell viability assay. RESULTS: The U-P, fH and MAC concentrations were significantly higher in patients with renal disease than in normal controls and correlated with the U-protein and tubular damage markers. Furthermore, multivariate analysis revealed a relationship between P levels and tubular damage markers. There were no significant changes in morphology and mRNA expression in the AP components (P, fH, fB, C3, C5 and C9) after the addition of up to 25% NHS. Dose-dependent depositions of P or fH were observed after the addition of P or fH on PTECs. Depositions of P were not inhibited by fH in a mixture of a fixed concentration of P and a variable concentration of fH, and vice versa. Preincubation with the fixed concentration of P before the addition of NHS or PDS increased the depositions of P, C3 and MAC compared with incubation with intact NHS or intact PDS only; the depositions of C3 and MAC showed a serum-dependent trend. Preincubation with P before NHS addition significantly suppressed cell viability without causing morphological changes. CONCLUSIONS: In the pathogenesis of renal tubular damage, P can directly bind to PTECs and may accelerate AP activation by surpassing fH regulation

    Autoimmune hemolytic anemia occurred prior to evident nephropathy in a patient with chronic hepatitis C virus infection: case report

    Get PDF
    BACKGROUND: Renal involvement in patients with chronic hepatitis C virus infection has been suggested to be due to a variety of immunological processes. However, the precise mechanism by which the kidneys are damaged in these patients is still unclear. CASE PRESENTATION: A 66 year old man presented with the sudden onset of autoimmune hemolytic anemia. Concomitant with a worsening of hemolysis, his initially mild proteinuria and hemoglobinuria progressed. On admission, laboratory tests revealed that he was positive for hepatitis C virus in his blood, though his liver function tests were all normal. The patient displayed cryoglobulinemia and hypocomplementemia with cold activation, and exhibited a biological false positive of syphilic test. Renal biopsy specimens showed signs of immune complex type nephropathy with hemosiderin deposition in the tubular epithelial cells. CONCLUSIONS: The renal histological findings in this case are consistent with the deposition of immune complexes and hemolytic products, which might have occurred as a result of the patient's underlying autoimmune imbalance, autoimmune hemolytic anemia, and chronic hepatitis C virus infection

    Guideline for Hereditary Angioedema (HAE) 2010 by the Japanese Association for Complement Research - Secondary Publication

    Get PDF
    ABSTRACTThis guideline was provided by the Japanese Association for Complement Research targeting clinicians for making an accurate diagnosis of hereditary angioedema (HAE), and for prompt treatment of the HAE patient in Japan. This is a 2010 year version and will be updated according to any pertinent medical advancements

    Complement in patients receiving maintenance hemodialysis: functional screening and quantitative analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The complement system is vital for innate immunity and is implicated in the pathogenesis of inflammatory diseases and the mechanism of host defense. Complement deficiencies occasionally cause life-threatening diseases. In hemodialysis (HD) patients, profiles on complement functional activity and deficiency are still obscure. The objectives of the present study were to measure the functional complement activities of the classical pathway (CP), lectin pathway (LP) and alternative pathway (AP) using a novel method and consequently to elucidate the rates of deficiencies among HD patients.</p> <p>Methods</p> <p>In the present study, 244 HD patients at one dialysis center and 204 healthy controls were enrolled. Functional complement activities were measured simultaneously using the Wielisa<sup>®</sup>-kit. The combination of the results of these three pathway activities allows us to speculate which candidate complement is deficient; subsequently, the deficient complement was determined.</p> <p>Results</p> <p>All three functional complement activities were significantly higher in the HD patients than in the control group (P < 0.01 for all cases). After identifying candidates in both groups with complement deficiencies using the Wielisa<sup>®</sup>-kit, 16 sera (8.8%) with mannose-binding lectin (MBL) deficiency, 1 serum (0.4%) with C4 deficiency, 1 serum (0.4%) with C9 deficiency, and 1 serum (0.4%) with B deficiency were observed in the HD group, and 18 sera (8.8%) with MBL deficiency and 1 serum (0.5%) with B deficiency were observed in the control group. There were no significant differences in the 5-year mortality rate between each complement-deficient group and the complement-sufficient group among the HD patients.</p> <p>Conclusion</p> <p>This is the first report that profiles complement deficiencies by simultaneous measurement of functional activities of the three complement pathways in HD patients. Hemodialysis patients frequently suffer from infections or malignancies, but functional complement deficiencies do not confer additional risk of mortality.</p

    Effects of ferric citrate on intracellular oxidative stress markers after hydrogen peroxide treatment of human U937 monocytes

    Get PDF
    Phosphate binders, such as iron (III) citrate hydrate (FCH), are essential medications for hemodialysis patients. Some in vivo studies have demonstrated that FCH prevented induction of oxidative stress in the presence of transferrin. However, how FCH affects iron-related oxidative stress in the absence of transferrin remains unclear. In the current study, we investigated the effects of ferric citrate (FC) on oxidative stress in the absence of transferrin in vitro to address this question. Human U937 monocytes were pretreated with FC, iron (II) chloride tetrahydrate (FeCl2・4H2O), iron (III) chloride hexahydrate (FeCl3・6H2O), or saccharated ferric oxide for 24 h and then treated with 10-mM hydrogen peroxide (H2O2) for 30 min. The final Fe concentrations were adjusted to approximately 200µg/dl. Iron concentration, intracellular reactive oxygen species (ROS) levels, and intracellular lipid peroxidation of the cell membrane were measured. After treatment with FC, iron concentration and ROS levels increased. Change in lipid peroxidation after treatment with FC was not observed. However, after treatment with H2O2, no change was observed in the intracellular ROS levels in FC-pretreated cells, whereas lipid peroxidation of the cell membrane was decreased. Despite the high iron concentration in FC-pretreated cells, neither intracellular ROS nor cell membrane lipid peroxidation levels were increased with H2O2 treatment. Their results might represent antioxidative effects of FC. The results of this study may contribute to a better understanding of the effects of oxidative stress in hemodialysis patients treated with FCH

    Definition, aims, and implementation of GA2LEN/HAEi Angioedema Centers of Reference and Excellence

    Get PDF
    corecore