118 research outputs found

    Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

    Get PDF
    Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP) play crucial roles in the pathogenesis of Alzheimer's disease (AD). Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”), and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed

    Migratory phenotypes of HSC-3 squamous carcinoma cell line induced by EGF and PMA: Relevance to migration of loosening of adhesion and vinculin-associated focal contacts with prominent filopodia

    Get PDF
    金沢大学大学院医学系研究科保健学専攻Cell migration is involved in carcinoma cell invasion and wound healing. We examined motogenic cytokines that potentiated migration of human HSC-3 carcinoma cells. To assess migratory activity, modified Boyden chambers were used. Among a variety of potential motogenic cytokines, epidermal growth factor (EGF) enhanced migration of HSC-3 cells both on collagen and fibronectin. Phorbol myristate acetate (PMA) also enhanced migration. Inhibitors of protein kinase C completely inhibited PMA-induced migration, but only partly inhibited EGF-induced migration. Protein kinase A was also involved in the EGF-induced signaling pathway for migration. Although the signaling pathways were independent, and the cell shape on collagen was different from that on fibronectin, migratory cells stimulated by EGF or PMA showed common morphology on different ligands. The cells were polygonal or round in shape and the loss of long cytoplasmic extensions was noted. Migratory HSC-3 cells stimulated by EGF or PMA became less adhesive to collagen and fibronectin. Since both EGF- and PMA-stimulated migration did not require de novo protein synthesis, the signaling pathways possibly lead to assembly and disassembly of an actin cytoskeleton. Immunofluorescence for vinculin was concentrated into focal contacts in EGF- and PMA-stimulated HSC-3 cells, whereas the fluorescence signal was hardly detected in non-stimulated cells. Talin and β1 integrin were immunolocalized at focal contacts in non-stimulated cells, and it remained unchanged in stimulated cells. Numerous filopodia visualized with actin immunofluorescence were formed around stimulated HSC-3 cells, whereas filopodia were short and sparse around elongated cytoplasms in non-stimulated cells. Thus, shortening of cytoplasmic extensions with numerous filopodia, loosening of adhesion, and vinculin-associated focal contacts were regarded as migratory phenotypes

    選択的セロトニン再取り込み阻害薬とセロトニン4受容体作動薬の直腸吻合部におけるインビボ神経再建に与える効果の比較

    Get PDF
    It was recently reported that activation of enteric neural 5-HT(4) receptors (SR4) promotes reconstruction of enteric neural circuit injury in distal gut of guinea pigs and that this reconstruction involves neural stem cells. We aimed to explore a novel approach using a selective serotonin reuptake inhibitor (SSRI), which increases endogenous 5-HT, to repair enteric nerve fiber injury in the rat distal gut. Enteric nerve fiber injury was performed by rectal transection and subsequent end-to-end one-layer anastomosis. The SSRI fluvoxamine maleate (100 μmol/l) was applied locally at the anastomotic site to compare with the 5-HT(4) agonist mosapride citrate (100 μmol/l) (applied for patent) applied locally and orally. Unlike mosapride, fluvoxamine failed to promote the regeneration of the nerve fiber tract across the anastomosis. Furthermore, fluvoxamine did not generate anti-distal-less homeobox 2 (DLX2)- and anti-SR4-positive cells (neural stem cells) and/or anti-neurofilament (NF)-positive cells (neural cells) in newly formed granulation tissue at the anastomosis, whereas these cell types were observed in mosapride-treated preparations. In contrast to its effects in guinea pigs, mosapride generated 5-bromo-2'-deoxyuridine (BrdU)-positive neural cells in ganglia sites 3 mm oral and anal from the anastomosis 2 wk after nerve fiber injury. All actions of mosapride were observed after local and or oral applications. These findings indicate that local SSRI treatment does not induce in vivo nerve fiber tract growth across the anastomosis in the rat distal gut. Mosapride induces nerve fiber tract growth across the anastomosis, mediated through enteric neural stem cells possibly from neural crest-derived stem cells or mesenchymal stem cells in the bone marrow.博士(医学)・甲616号・平成26年3月17日発行元の規定により、本文の登録不可。本文は以下のURLを参照 "http://dx.doi.org/10.1152/ajpgi.00284.2011
    corecore