18 research outputs found

    Impact of image filtering and assessment of volume-confounding effects on CT radiomic features and derived survival models in non-small cell lung cancer

    Full text link
    BACKGROUND No evidence supports the choice of specific imaging filtering methodologies in radiomics. As the volume of the primary tumor is a well-recognized prognosticator, our purpose is to assess how filtering may impact the feature/volume dependency in computed tomography (CT) images of non-small cell lung cancer (NSCLC), and if such impact translates into differences in the performance of survival modeling. The role of lesion volume in model performances was also considered and discussed. METHODS Four-hundred seventeen CT images NSCLC patients were retrieved from the NSCLC-Radiomics public repository. Pre-processing and features extraction were implemented using Pyradiomics v3.0.1. Features showing high correlation with volume across original and filtered images were excluded. Cox proportional hazards (PH) with least absolute shrinkage and selection operator (LASSO) regularization and CatBoost models were built with and without volume, and their concordance (C-) indices were compared using Wilcoxon signed-ranked test. The Mann Whitney U test was used to assess model performances after stratification into two groups based on low- and high-volume lesions. RESULTS Radiomic models significantly outperformed models built on only clinical variables and volume. However, the exclusion/inclusion of volume did not generally alter the performances of radiomic models. Overall, performances were not substantially affected by the choice of either imaging filter (overall C-index 0.539-0.590 for Cox PH and 0.589-0.612 for CatBoost). The separation of patients with high-volume lesions resulted in significantly better performances in 2/10 and 7/10 cases for Cox PH and CatBoost models, respectively. Both low- and high-volume models performed significantly better with the inclusion of radiomic features (P<0.0001), but the improvement was largest in the high-volume group (+10.2% against +8.7% improvement for CatBoost models and +10.0% against +5.4% in Cox PH models). CONCLUSIONS Radiomic features complement well-known prognostic factors such as volume, but their volume-dependency is high and should be managed with vigilance. The informative content of radiomic features may be diminished in small lesion volumes, which could limit the applicability of radiomics in early-stage NSCLC, where tumors tend to be small. Our results also suggest an advantage of CatBoost models over the Cox PH models

    Quality assurance for automatically generated contours with additional deep learning

    Get PDF
    Objective: Deploying an automatic segmentation model in practice should require rigorous quality assurance (QA) and continuous monitoring of the model’s use and performance, particularly in high-stakes scenarios such as healthcare. Currently, however, tools to assist with QA for such models are not available to AI researchers. In this work, we build a deep learning model that estimates the quality of automatically generated contours. Methods: The model was trained to predict the segmentation quality by outputting an estimate of the Dice similarity coefficient given an image contour pair as input. Our dataset contained 60 axial T2-weighted MRI images of prostates with ground truth segmentations along with 80 automatically generated segmentation masks. The model we used was a 3D version of the EfficientDet architecture with a custom regression head. For validation, we used a fivefold cross-validation. To counteract the limitation of the small dataset, we used an extensive data augmentation scheme capable of producing virtually infinite training samples from a single ground truth label mask. In addition, we compared the results against a baseline model that only uses clinical variables for its predictions. Results: Our model achieved a mean absolute error of 0.020 ± 0.026 (2.2% mean percentage error) in estimating the Dice score, with a rank correlation of 0.42. Furthermore, the model managed to correctly identify incorrect segmentations (defined in terms of acceptable/unacceptable) 99.6% of the time. Conclusion: We believe that the trained model can be used alongside automatic segmentation tools to ensure quality and thus allow intervention to prevent undesired segmentation behavior

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Blood- and Imaging-Derived Biomarkers for Oncological Outcome Modelling in Oropharyngeal Cancer: Exploring the Low-Hanging Fruit

    No full text
    Aims: To assess whether CT-based radiomics and blood-derived biomarkers could improve the prediction of overall survival (OS) and locoregional progression-free survival (LRPFS) in patients with oropharyngeal cancer (OPC) treated with curative-intent RT. Methods: Consecutive OPC patients with primary tumors treated between 2005 and 2021 were included. Analyzed clinical variables included gender, age, smoking history, staging, subsite, HPV status, and blood parameters (baseline hemoglobin levels, neutrophils, monocytes, and platelets, and derived measurements). Radiomic features were extracted from the gross tumor volumes (GTVs) of the primary tumor using pyradiomics. Outcomes of interest were LRPFS and OS. Following feature selection, a radiomic score (RS) was calculated for each patient. Significant variables, along with age and gender, were included in multivariable analysis, and models were retained if statistically significant. The models’ performance was compared by the C-index. Results: One hundred and five patients, predominately male (71%), were included in the analysis. The median age was 59 (IQR: 52–66) years, and stage IVA was the most represented (70%). HPV status was positive in 63 patients, negative in 7, and missing in 35 patients. The median OS follow-up was 6.3 (IQR: 5.5–7.9) years. A statistically significant association between low Hb levels and poorer LRPFS in the HPV-positive subgroup (p = 0.038) was identified. The calculation of the RS successfully stratified patients according to both OS (log-rank p p = 0.0002). The C-index of the clinical and radiomic model resulted in 0.82 [CI: 0.80–0.84] for OS and 0.77 [CI: 0.75–0.79] for LRPFS. Conclusions: Our results show that radiomics could provide clinically significant informative content in this scenario. The best performances were obtained by combining clinical and quantitative imaging variables, thus suggesting the potential of integrative modeling for outcome predictions in this setting of patients

    The role of radiomics in tongue cancer: A new tool for prognosis prediction

    No full text
    Background: Radiomics represents an emerging field of precision-medicine. Its application in head and neck is still at the beginning. Methods: Retrospective study about magnetic resonance imaging (MRI) based radiomics in oral tongue squamous cell carcinoma (OTSCC) surgically treated (2010-2019; 79 patients). All preoperative MRIs include different sequences (T1, T2, DWI, ADC). Tumor volume was manually segmented and exported to radiomic-software, to perform feature extraction. Statistically significant variables were included in multivariable analysis and related to survival endpoints. Predictive models were elaborated (clinical, radiomic, clinical-radiomic models) and compared using C-index. Results: In almost all clinical-radiomic models radiomic-score maintained statistical significance. In all cases C-index was higher in clinical-radiomic models than in clinical ones. ADC provided the best fit to the models (C-index 0.98, 0.86, 0.84 in loco-regional recurrence, cause-specific mortality, overall survival, respectively). Conclusion: MRI-based radiomics in OTSCC represents a promising noninvasive method of precision medicine, improving prognosis prediction before surgery

    High-performance prediction models for prostate cancer radiomics

    No full text
    When researchers are faced with building machine learning (ML) radiomic models, the first choice they have to make is what model to use. Naturally, the goal is to use the model with the best performance. But what is the best model? It is well known in ML that modern techniques such as gradient boosting and deep learning have better capacity than traditional models to solve complex problems in high dimensions. Despite this, most radiomics researchers still do not focus on these models in their research. As access to high-quality and large data sets increase, these high-capacity ML models may become even more relevant. In this article, we use a large dataset of 949 prostate cancer patients to compare the performance of a few of the most promising ML models for tabular data: gradient-boosted decision trees (GBDTs), multilayer perceptions, convolutional neural networks, and transformers. To this end, we predict nine different prostate cancer pathology outcomes of clinical interest. Our goal is to give a rough overview of how these models compare against one another in a typical radiomics setting. We also investigate if multitask learning improves the performance of these models when multiple targets are available. Our results suggest that GBDTs perform well across all targets, and that multitask learning does not provide a consistent improvement
    corecore