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Abstract 

Objective:  Deploying an automatic segmentation model in practice should require rigorous quality assurance (QA) 
and continuous monitoring of the model’s use and performance, particularly in high-stakes scenarios such as health‑
care. Currently, however, tools to assist with QA for such models are not available to AI researchers. In this work, we 
build a deep learning model that estimates the quality of automatically generated contours.

Methods:  The model was trained to predict the segmentation quality by outputting an estimate of the Dice simi‑
larity coefficient given an image contour pair as input. Our dataset contained 60 axial T2-weighted MRI images of 
prostates with ground truth segmentations along with 80 automatically generated segmentation masks. The model 
we used was a 3D version of the EfficientDet architecture with a custom regression head. For validation, we used a 
fivefold cross-validation. To counteract the limitation of the small dataset, we used an extensive data augmentation 
scheme capable of producing virtually infinite training samples from a single ground truth label mask. In addition, we 
compared the results against a baseline model that only uses clinical variables for its predictions.

Results:  Our model achieved a mean absolute error of 0.020 ± 0.026 (2.2% mean percentage error) in estimating the 
Dice score, with a rank correlation of 0.42. Furthermore, the model managed to correctly identify incorrect segmenta‑
tions (defined in terms of acceptable/unacceptable) 99.6% of the time.

Conclusion:  We believe that the trained model can be used alongside automatic segmentation tools to ensure qual‑
ity and thus allow intervention to prevent undesired segmentation behavior.

Keywords:  Quality assurance (Health care), Confidence calibration, Diagnostic imaging, Prostate, Magnetic 
resonance imaging
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Key points

•	 A deep learning model is trained to predict segmen-
tation quality.

•	 Data augmentation provides a means to expand the 
data set almost infinitely.

•	 The model achieves 99.6% accuracy and 2.2% mean 
percentage error.
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•	 The model can be used to assure a desired standard is 
met.

Introduction
Segmentation of anatomical structures in medical images 
is a vital step in many clinical domains including radi-
ology, pathology, ophthalmology, dermatology, and 
microscopy [1–4]. For instance, accurate delineations of 
neighboring organs are crucial for calculating dose and 
assessing risks in radiotherapeutic treatment planning 
[5]. Most contemporary research in medical image seg-
mentation focus on developing and applying automatic 
segmentation procedures, primarily with deep learn-
ing (DL) models, to reduce the workload of clinicians, 
speed up the delineation process, and improve the seg-
mentation quality. As the performance of these models 
has improved, institutions are looking to start experi-
menting with them in clinical practice. During research 
focused on developing and validating the models, how-
ever, several aspects of model deployment have been left 
unaddressed, including model drift, underspecification 
(that is, when pipelines can return many predictors with 
equivalent training performance, but with very different 
deployment performance) [6], dataset and model biases, 
and quality assurance. Indeed, the authors of a recent 
survey of AI in radiation oncology [5] argued that there is 
an unmet need for guidance on the implementation and 
use of AI models in clinical practice.

Quality assurance (QA) is a key step in the deploy-
ment of any AI algorithm or model [5, 7–10]. In general, 
it refers to the practice of monitoring the output, per-
formance, and user experience of a deployed method or 
model to ensure that it is working as intended. This is of 
particular importance in medical contexts, where patient 
outcomes may be jeopardized. Previously, the role of 
humans in this step has been mostly subsumed, but there 
appears to be no principled reason why this cannot be 
carried out by AI algorithms as well. Despite the potential 
benefit of AI and machine learning (ML) for QA being 
recognized [11], there is surprisingly little literature on 
the topic, particularly in the field of image segmentation.

In ordinary classification tasks, the output of the model 
is typically a vector of probabilities that represents the 
model’s certainty for a given sample. This vector can be 
used to give users a measure of how confident the model 
is for a given prediction (although the reliability of this 
confidence estimation is debated—see the so-called cali-
bration problem). For segmentation models, on the other 
hand, the output is typically a pixel-wise collection of 
probabilities, which makes its direct use ambiguous. One 
way to overcome this is to use an ensemble of multiple 
segmentation models to build an uncertainty prediction 

model based upon the variance of their predictions, as 
suggested in [12]. However, ensembling multiple models 
require drastically more time and resources, particularly 
in the case of DL. Another approach is to use a Bayes-
ian framework, which inherently models uncertainty 
[13]. Men et al. [14] tried to solve the problem by study-
ing a binary definition of quality (e.g., errors are present/
absent), while other researchers have suggested using 
rule-based models derived from geometric attributes [15, 
16], or texture-based [17], volumetric-based [18], and/
or shape- and intensity-based [19] features with ML and 
statistical models. While these methods can improve the 
quality evaluation of contours, they suffer from the inher-
ent limitations of handcrafted models, which are often 
coarse-grained and typically produce inferior results. In 
this context, DL models, whose superior feature extrac-
tion and inference capabilities have been demonstrated 
in a multitude of other image analysis domains, may pro-
vide invaluable advantages.

Research relating to QA of segmentation models with 
DL is very limited. Chen et  al. [20] conducted a QA 
study on 680 breast cancer patient CT images based on a 
ResNet-101. Their approach achieved good performance 
but used a discrete classification rather than a continuous 
regression method, which could potentially be a limita-
tion in clinical contexts if flexibility is desired (since the 
classification threshold cannot be changed dynamically). 
Two other related approaches are the fields of uncertainty 
prediction and out-of-bounds detection. In uncertainty 
prediction problems, the task is to estimate the uncer-
tainty of the network given an input prediction pair. (This 
is typically studied in regression problems where network 
outputs are not represented as certainties.) Traditional 
approaches in this field model the uncertainty with a 
Bayesian framework and typically require either explicit 
models of the ground truth distribution [21–23] or joint 
training with an uncertainty network [24]. While joint 
training can be an effective and well-versed approach, 
it stands to reason that it cannot be implemented after 
training. Instead, out-of-bounds detection simply tries to 
detect samples that differ greatly from the training distri-
bution. These detectors often rely on artificially created 
out-of-distribution samples (possibly with a generator 
neural network [25]) [26], which is a difficult problem in 
itself that introduces another dimension of bias. Due to 
the scarcity of research directly related to QA, it can be 
useful to draw inspiration from other domains that pre-
dict (continuous) outcomes directly from images. One 
example is age estimation, where the task is to predict 
a person’s age from pictures of their face (see, e.g., [27–
30]). Notably, all state-of-the-art models in this field are 
DL architectures. However, a key thing that distinguishes 
segmentation QA from age estimation is the presumed 



Page 3 of 10Isaksson et al. Insights into Imaging          (2022) 13:137 	

in-sample interaction between images and contours: it 
is impossible to tell the quality of a segmentation just by 
purely looking at the segmentation (or image).

There are three main ways to predict the performance 
of automatically generated contours: regressing the per-
formance metric directly, predicting some discrete or 
qualitative measure of performance (e.g., good/moder-
ate/bad), or predicting the ranking of samples ordered by 
quality (i.e., ordinal regression/classification). The second 
method is useful when precise ground truth segmenta-
tions are not available, or when time constraints limit the 
annotation quality of the training data since clinicians 
can allocate samples to qualitative categories faster and 
more easily than they can produce reliable ground truth 
segmentations. The third method can be beneficial when 
only the ordering of samples is important, but the down-
side is that single-sample inference is not straightforward, 
particularly for out-of-distribution samples. We opted for 
the first method, as it is good when many training sam-
ples are available, preferably over a wide distribution of 
ground truth segmentation scores. It allows for the use of 
distance-based loss metrics, which penalize poor predic-
tions more than good ones. In this work, we sought to:

•	 Build a convolutional DL model to predict the quality 
of automatically generated contours. This model can 
be used in QA to give automatic segmentation mod-
els a greater sense of transparency.

•	 Compare the model to a naïve baseline that predicts 
the segmentation performance from patient charac-
teristics only. If poor performance can be estimated 
from clinical variables alone, clinicians may be able 
to leverage this information to exclude subsets of 
patients on which automatic segmentation methods 
produce poor results.

•	 Investigate when the model is able to correctly han-
dle likely failure cases with noisy, empty, or mis-
aligned predictions. Identifying failure cases is a 
crucial step in QA and analyzing this behavior may 
provide insights into potential model biases and 
model behaviors.

Methods
Dataset
To train the quality prediction models, we used a set of 
60 prostate MRI images along with automatically gen-
erated contours that had previously been produced by 
a bespoke deep segmentation network [38, 39] with a 
modified 3D-adopted EfficientDetB0 [36] architecture 
(see Sect. 2.4 for additional details on this architecture). 
Each image contour pair had an accompanying ground 
truth segmentation mask against which the quality of the 

automatically generated contours could be calculated. 
The ground truth segmentations were generated manu-
ally by consensus from two expert radiologists (> 5 years’ 
experience). In addition, 20 images had an additional 
set of automatically generated contours produced by 
a slightly different network, such that the model could 
learn to distinguish the difference between different con-
tours on the same image. In total, there were 60 prostate 
images and 80 automatically generated contours. The 
Dice values of the contours were all in the [0.847, 0.943] 
range.

The images used for segmentation were axial 
T2-weighted MRI scans of the prostate acquired using 
a 1.5  T scanner (slice thickness 3.0–3.6  mm, slice gap 
0.3 mm, pixel spacing 0.59 × 0.59 mm, echo time 118 ms, 
and repetition time 3780 ms) [31, 32]. All images under-
went N4 bias field correction (SimpleITK 2.0.2 with 
default parameters) before segmentation and model 
training, and all images had equal voxel sizes.

The following clinical characteristics were available for 
each patient for use in the baseline model: age, prostate 
volume, ISUP grade, PI-RADS score, iPSA, and risk class.

The study was performed within the notification 
presented to the Ethics Committee of IRCCS Istituto 
Europeo di Oncologia and Centro Cardiologico Monzino 
(via Ripamonti 435, 20,141 Milano, Italy) (CE notification 
n. UID 2438). All patients had given their consent for use 
of their data for research and educational purposes.

Predicting contour quality
We framed the problem of quality assurance as a regres-
sion problem, where the input to the model is an image 
contour pair and the output is a measure of quality (see 
Fig.  1 for an illustrative overview). The specific quality 
metric we chose was the Dice coefficient because it is 
mathematically well defined, easily interpreted, bounded, 
and widely used within the medical imaging community.

For two binary pixel arrays (e.g., segmentation maps) A 
and B, the Dice coefficient is defined as

Its value ranges from 0 to 1 where 1 corresponds to 
perfectly overlapping segmentations and 0 corresponds 
to having no intersection.

To measure the performance of the quality prediction 
models, we used mean absolute error (MAE) between the 
predicted Dice and the target Dice values, as well as the 
Spearman rank correlation between them. The Spearman 
correlation measures how correct the order of an ordered 
set is, and ranges from 1 (all samples are placed in cor-
rect order) to − 1 (all samples are placed in the oppo-
site order). Random placement has an expected rank 

(1)Dice(A,B) =
2|A ∩ B|

|A| + |B|
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correlation of zero. As such, it gives an intuitive under-
standing of how well the algorithm can tell good contours 
from bad ones. In this work, the use of rank correlation 
will be implied whenever correlations are mentioned.

Baseline quality prediction model
The baseline model tries to predict how well an arbitrary 
segmentation algorithm would perform on a patient 
given only the clinical variables for that patient. The 
rationale for this is to examine whether any clinical vari-
ables are predictive of how hard it is to segment a given 
prostate. Because this model makes no use of images, it 
cannot distinguish between different segmentations of 
the same patient, but it can still be useful as an analyti-
cal tool and a benchmark. As the baseline model archi-
tecture, we chose a gradient boosted decision tree model 
implemented in CatBoost version 1.0.3 [33] with Python 
3.7. For the 20 images with two different segmentations, 
we used the mean value of the Dice coefficients as the 
target value.

To train this model, we first perform a 64-step param-
eter search with the Optuna Python package [34] with 
default settings to find suitable parameters. The search 
space is displayed in Table  1. Each parameter set was 
evaluated by its mean absolute error after eight repeated 
random fivefold cross-validations. The best model was 
then further evaluated with 64 repeated random fivefold 
cross-validations.

In order to gauge the usefulness of the baseline model, 
we compared its performance against a naïve baseline 
that predicts the mean Dice value for all samples.

Quality prediction network
The deep learning model we trained to predict segmenta-
tion quality was a modified EfficientDet [35] architecture 
(see Fig. 2). This architecture is an extension of the Effi-
cientNet model [36] that is tailored toward object detec-
tion—it includes an EfficientNet backbone with seven 
levels (P1 to P7) connected to repeated “BiFPN” blocks 
(Bidirectional Feature Pyramid blocks). Our modifica-
tions included adaptation to 3D convolutions as well as 
an expansion factor reduction (from 6 to 2) and a cus-
tom regression head. The regression head consisted of 

Fig. 1  Overview of the problem of predicting the quality of organ segmentations. First, a segmentation model (not covered in this article) takes 
images as input and produces segmentation maps. Then, our quality prediction model takes both the images and the segmentation maps as input 
and produces an estimate of the quality of the segmentation—in this case the Dice similarity coefficient. Good contours have a high Dice value and 
poor contours have a low Dice value. Note that we need ground truth segmentations in order to calculate the true Dice value and train the quality 
prediction model with supervised learning. In this study, we used 60 ground truth segmentations and 80 automatically generated masks along with 
heavy data augmentation to train the quality prediction model

Table 1  Parameter space searched by the Optuna parameter 
search for the baseline CatBoost model

* log-uniform prior

[]: continuous interval

{}: integer interval

Parameter Values

n estimators {1, 256}

max depth {1, 6}

l2 leaf reg [10−3,10]*

random strength [0.1, 3]
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serially connected fast normalized fusion nodes (see [35] 
for details) followed by batch normalization, PReLU, a 
single-channel convolution, and a final sigmoid activa-
tion function. The EfficientNet [36] backbone was a B0 
type with the default filter parameters of 32, 16, 24, 40, 
80, 112, and 192 channels for the P1 to P7 levels, respec-
tively. Our BiFPN blocks were repeated three times and 
used 64 filters each (Fig. 3).

To reduce the memory consumption of the model, 
the images were center-cropped from 320 × 320 × 28 to 
160 × 160 × 28 voxels. The images were also normalized 
by linearly mapping the 0th and 99th percentiles to the 

[0, 255] range, after which the 100th percentile values 
were appended. The MRI images and segmentation maps 
were concatenated on the channel dimension to form 
4D tensors of shape 160 × 160 × 28 × 2 for each sample. 
These 4D tensors were used as the input to the model.

The network was trained for 200 epochs with MSE loss 
and batch size 2. We used the Adam optimizer with a 
learning rate of 0.002, which was reduced to 0.0002 after 
120 epochs. Validation of the model was done with a ran-
dom fivefold cross-validation.

To give the network the ability to interpolate outside 
the narrow range of target Dice values typical of pros-
tate segmentation, we used an elaborate data augmenta-
tion scheme to generate novel contours. At each epoch, 
one of the two samples had its corresponding contour 
switched with another contour randomly chosen from 
the training set such that each batch consisted of one real 
and one “fake” image contour pair. The fake contour was 
then scaled by a random factor in [0.55, 1.8]. After this 
procedure, we also applied standard data augmentation 
two both samples (in order): horizontal flips, uniform 
in-plane rotation (in the ± π

12
 range), uniform 2D x and 

y translation (in  ± 10%), uniform zoom (in  ± 10%), and 
elastic deformation. This procedure also eliminates bias 
that could be introduced by only using contours from a 
single segmentation model.

Failure case studies
We evaluated how well the model predicts the quality of 
different variations of failed contours, for which the pre-
dicted Dice score ought to be low. The following failure 
modes were investigated (see Fig. 7 for illustrations):

Fig. 2  Network architecture. An EfficientNet B0 backbone is connected to three repeated bidirectional feature pyramid blocks (BiFPNs). The 
regression head consists of serially connected fast normalized fusion nodes and finally BatchNorm (BN), PReLU, a single-channel convolution, and a 
sigmoid activation. Numbers indicate the resolution at each level relative to the input. Image adapted from [35]

Fig. 3  Predicted vs. target Dice values of the baseline CatBoost 
model, which only uses clinical variables to predict segmentation 
quality. The dotted line indicates perfect x = y predictions. The 
predictions of this model tend to only vary minimally (very close 
to the naïve model), suggesting that the clinical variables are not 
indicative of segmentation performance
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1	 empty contours (every pixel in the array is zero—no 
prostate tissue has been identified),

2	 uniform binary noise (each pixel in the array is ran-
domly assigned a value of zero or one),

3	 filled matrix of ones (every pixel in the array is one—
the whole image has been identified as prostate tis-
sue)

4	 shifted ground truth masks (the ground truth seg-
mentation is randomly shifted uniformly by ± 50% in 
the x- and y-direction).

These cases were constructed from the 16 patients 
in the test set at each validation fold, such that each 
failure case generated 80 independent samples in the 
course of the cross-validation procedure.

In addition, we evaluated the predictions on the 16 
unseen ground truth segmentations at each valida-
tion fold (for a total of 80 ground truth images). This 
allowed us to test the model performance on the oppo-
site end of the domain, where all target values are 1.

We also defined a global accuracy score to indicate 
how well the model performed across all test samples 
(80 from the standard test set, 320 failure case samples, 
and 80 ground truth samples). This is useful because 
the MAE is not always indicative of how helpful the 
model’s predictions are. For example, if there is a seg-
mentation with a true Dice value of 0.0, and the model 
predicts a Dice value of 0.5, the contour would still be 
flagged as “poor quality,” because both 0.0 and 0.5 Dice 
are considered bad. This means that the prediction is 
qualitatively correct, even though the MAE of 0.5 is 
very large. For a predicted Dice value ŷ and target Dice 
value y, we defined a failed prediction as either:

1.	 (ŷ < 0.75)∧(y > 0.8), i.e., a predicted Dice value of less 
than 0.75 when the target Dice value is larger than 
0.8, or

2.	 (ŷ > 0.8)∧(y < 0.75), i.e., a predicted Dice value larger 
than 0.8 when the target Dice value is less than 0.75.

Results
Baseline model
The predicted Dice values by the baseline CatBoost 
model are shown in Fig. 3 and the performance of the 
CatBoost and naïve baseline models are summarized 
in Table 2. The MAE were 0.016 for both models, and 
the prediction–target correlation for the CatBoost 
model was − 0.155. The most important features in the 
CatBoost model were iPSA (68%) and volume (21%) 
(Fig. 4).

Table 2  Average mean absolute error (MAE) and rank 
correlation of the baseline CatBoost and naïve models, which 
only utilize clinical variables to predict segmentation quality. 
The naïve method predicts the mean target value for all 
samples. Parentheses indicate standard deviation. The values are 
aggregated from 64 repeated fivefold cross-validations

MAE Corr

CatBoost 0.016 (± 3·10−4) − 0.16 (± 0.02)

Naïve 0.016 (± 0) n/a

Fig. 4  Predicted vs. target Dice values of the deep network shown in 
Fig. 2. The dotted line indicates perfect x = y predictions

Fig. 5  Predicted Dice values, targets, and the respective absolute 
error of the quality prediction deep learning network. The mean 
absolute error is 0.02 and the correlation between the predicted and 
target values are 0.42
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Quality prediction network
The mean absolute error of the Dice value predictions 
was 0.020 ± 0.026 (2.2% mean absolute percentage error), 
and their correlation with the target values was 0.423 
(Figs.  5 and 6). The maximum absolute error was 0.066 
(equivalent to a 7.3% deviation from the target). The time 
required to generate predictions was 0.02 s per patient on 
an RTX 3090 GPU. Characteristic training curves of the 
network are shown in Fig. 4.

Failure case studies
The results of the predictions on the constructed fail-
ure cases are shown in Fig. 7 together with an example 
segmentation from each type of failure. The least suc-
cessful cases were the empty contours (0.317 MAE), 
followed by the shifted GT segmentations (0.233 MAE), 
the all-ones segmentations (0.182 MAE), and the binary 
noise (0.126 MAE). The shifted GT cases, which had 

the second-worst MAE, had the best correlation with 
the target values: 0.522. The empty and GT contours 
have undefined correlations since their target values are 
all zeros and all ones, respectively.

In terms of overall accuracy, only two out of the 480 
cases were misclassified, amounting to a 99.6% accu-
racy. The first case was a segmentation full of ones with 
a predicted Dice value of 0.81 and target Dice value of 
0.11, and the second case was a shifted GT mask with 
a predicted Dice value of 0.82 and target Dice value of 
0.72.

Unsuccessful experiments
As well as the above experimental results, we also pro-
vide observations on some of the groundwork testing 
carried out in preparation for this work.

One architecture we tested used a confidence branch, 
which is an extension that can be made to arbitrary net-
works [37]. The confidence branch is trained to output 
an estimate of how confident the network is in its pre-
dictions. This can be achieved by letting the network 
“peak” at the correct answers (with a penalty) during 
training in order to output more correct answers. The 
intuition behind this is that peaking is only profitable 
for inherently uncertain predictions. We did not man-
age to get this branch to output useful values—the 
confidence always converged to either 0 or 1 for all 
samples, even after introducing a budget parameter.

Another DL network we experimented with used a 
regression head added directly to the EfficientNet back-
bone, which requires much less memory and training 
time. This worked well in terms of training MSE but 
was incredibly noisy. A similar scenario occurred when 
we trained our final network architecture with fewer 
BiFPN layers and/or filters.

Fig. 6  Characteristic training curves of the deep quality prediction 
network. The plot is an aggregate of all the different validation folds. 
The validation loss often spikes in early training, which then disappear 
safter the learning rate reduction at 120 epochs

Fig. 7  Performance of the quality prediction model (MAE and rank correlation of predicted Dice scores) on different cases of failed segmentations: 
completely empty contours, pure noise, matrices full of ones, and shifted ground truths (GTs). The performance on real GT segmentation maps is 
also shown. All results are aggregated over 5 different validation splits for a total of 80 samples each
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Discussion
Our DL quality prediction model accurately predicted the 
Dice score of automatically generated prostate contours 
with a MAE of 0.020. This amounts to a mean deviation 
from the true Dice values of only 2.2%. In particular, none 
of the errors were larger than 0.066 (7.3% deviation from 
the target), which indicates a high degree of robustness 
and reliability. The moderate correlation of 0.42 between 
the predicted and target values suggests that the model 
is also able to correctly tell qualitative differences (i.e., 
which ones are better/worse) between contours, even 
when the differences are minor.

The performance in the failure cases might seem 
alarming when looking at their MAE values, which range 
from 0.126 MAE on binary noise to 0.317 on empty con-
tours. However, this would likely not be a major problem 
in practice since the overall accuracy of the model was 
99.6%. For example, a large MAE does not necessarily 
indicate a failure of the model when both the target and 
predicted Dice values are low. Our model was not trained 
on any contours with target Dice values of 0.0, and as 
such had no way to interpolate to this regime. Anticipat-
ing failure cases and including such cases in the training 
set is one way to boost the model’s reliability. Further-
more, a well-built segmentation model being deployed 
in practice ought to not output obviously poor segmen-
tations (assuming no model drift), and such failures are 
easy to spot by simple inspection without the need for an 
external quality assurance model.

The naïve model that predicts the mean of the target 
Dice values for every patient achieved a MAE of 0.016, 
which is lower than the DL model’s MAE of 0.02. How-
ever, the naïve model would not be able to identify failure 
cases and qualitative differences between contours, since 
all its predictions are identical. Similarly, our baseline 
CatBoost model, which only used clinical characteristics 
to predict the quality of automatically generated con-
tours, also had a MAE of 0.016. The low variance along 
with the negative correlation of the CatBoost predic-
tions (Fig. 3 and Table 2) suggests that this model has no 
merit over the naïve model, effectively rendering it use-
less in practice. This indicates that the performance of 
automatic segmentation models cannot be inferred from 
clinical characteristics alone. This should not be too sur-
prising given that the model is not able to distinguish dif-
ferent segmentations on the same patient.

An obvious question to raise is: If we need a deep net-
work to safeguard the performance of the segmenta-
tion network, should we then not need a deep network 
to safeguard the performance of the safeguard network? 
The predicament is that, if the performance of the first 
network could be guaranteed, we would not need a safe-
guard network in the first place, and if not, we would 

potentially need an infinite chain of networks. It is likely, 
however, that the utility of such networks diminishes 
the further down the chain you go because the error is 
necessarily reduced by a nonzero amount each step. An 
analogy can be drawn to gradient boosted machines, 
which are chains of prediction models trained on a prop-
agated error signal. These models are usually trained 
with decision trees because decision trees are extremely 
fast to train. On the other hand, for DL models in com-
puter vision where training times often exceed hours or 
even days, it should be clear that using more than a few 
chained safeguard networks is practically infeasible.

While similar studies we found focused on either 
binary error detection or discretized ordinal regression, 
our model performs continuous regression. In general, 
this should be preferred, since it is more general and 
often enables better performance. This approach also 
enables a dynamic definition of error detection that can 
be changed on the fly, which may be valuable in a medi-
cal context. The only other study we found that regresses 
Dice scores directly achieved a MAE of 0.06 [20] on 
breast cancer segmentation, which is three times higher 
than our MAE of 0.020.

One thing to note is that, if the Dice prediction net-
work is accurate enough, the original segmentation net-
work could utilize the predicted Dice values to inform its 
own gradients, for instance by using the Dice prediction 
network as a discriminator in a GAN training scheme. 
This is a potential direction for future research but was 
out of scope for this study.

While this article demonstrates a novel way to assess 
the quality of automatically generated contours, it is 
important to note that external and rigorous validation 
is needed before the methods can be reliably applied 
in practice. With the limited dataset of 80 patients, the 
results herein can only be considered as a proof of con-
cept. Ideally, a test set of unseen data should be used to 
assess real out-of-sample performance and reproduc-
ibility, but we opted to not use a held-out set in order to 
give the training and validation sets more coverage. Too 
small datasets risk being overly dominated by random 
effects, which can compromise the learned representa-
tions and the performance estimation. At present, there 
is no universally accepted solution to these tradeoffs, 
especially in small data scenarios. It can also be discussed 
whether it is wise to use an AI algorithm to assess the 
output of another AI algorithm in clinical practice, and 
when human supervision should be requested. At the 
very least, it seems natural to demand human supervision 
in early applications of AI in healthcare. One benefit of 
QA models like ours is that they can easily be deployed 
alongside a human professional in order to alleviate the 
workload and improve his/her judgment.
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Conclusions
In this work, we trained a deep learning model to predict 
the quality of prostate contours in terms of their Dice 
similarity coefficient with the ground truth labels. The 
model can be used in practice to ensure quality and mon-
itor the performance of deployed automated contouring 
models. Our results showed an absolute deviation from 
the target values of only 0.016, which is equivalent to a 
1.7% deviation. With suitable retraining, the model could 
also be applied to any other segmentations.
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